正多面体内のHamiltonian pathの数について
正多面体は正四面体、正六面体、正八面体、正十二面体、正二十面体の5種類あります。
Hamiltonian cycleの数は
にある通り、それぞれ
6, 12, 32, 60, 2560
ある。
一方上記リンクによれば、Hamiltonian pathの数は
24, 144, 240, ?, ?
となっている。
この?の部分も含めて、graphillionを用いれば求めることができる。
各多面体をGraph Setを用意し、計算させるだけである。
コードと出力結果は以下の通りです。
# Using graphillion
from graphillion import GraphSet
def make_tetrahedral_graph():
return [
(1, 2), (1, 3), (1, 4),
(2, 3), (3, 4), (4, 2),
]
def make_cubical_graph():
return [
(1, 2), (2, 3), (3, 4), (4, 1),
(5, 6), (6, 7), (7, 8), (8, 5),
(1, 5), (2, 6), (3, 7), (4, 8),
]
def make_octahedral_graph():
return [
(1, 2), (2, 3), (3, 1),
(4, 5), (5, 6), (6, 4),
(4, 3), (4, 1),
(5, 1), (5, 2),
(6, 2), (6, 3),
]
def make_dodecahedral_graph():
return [
( 1, 2), ( 2, 3), ( 3, 4), ( 4, 5), ( 5, 1),
( 6, 1), ( 7, 2), ( 8, 3), ( 9, 4), (10, 5),
(11, 10), (11, 6),
(12, 6), (12, 7),
(13, 7), (13, 8),
(14, 8), (14, 9),
(15, 9), (15, 10),
(16, 11), (17, 12), (18, 13), (19, 14), (20, 15),
(16, 17), (17, 18), (18, 19), (19, 20), (20, 16),
]
def make_icosahedral_graph():
return [
( 1, 2), ( 2, 3), ( 3, 1),
( 4, 3), ( 4, 1),
( 5, 4), ( 5, 1), ( 5, 6),
( 6, 1), ( 6, 2),
( 7, 6), ( 7, 2), ( 7, 8),
( 8, 2), ( 8, 3),
( 9, 8), ( 9, 3), ( 9, 4),
(10, 11), (11, 12), (12, 10),
(10, 9), (10, 4), (10, 5),
(11, 5), (11, 6), (11, 7),
(12, 7), (12, 8), (12, 9),
]
def make_universe(n):
if n == 4:
return make_tetrahedral_graph()
elif n == 6:
return make_cubical_graph()
elif n == 8:
return make_octahedral_graph()
elif n == 12:
return make_dodecahedral_graph()
elif n == 20:
return make_icosahedral_graph()
def directed_Hamiltonian_cycle(n):
universe = make_universe(n)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return 2 * cycles.len()
def directed_Hamiltonian_path(n):
universe = make_universe(n)
# V-E+F=2
v = len(universe) + 2 - n
GraphSet.set_universe(universe)
s = 0
for goal in range(1, v + 1):
paths = GraphSet.paths(1, goal, is_hamilton=True)
s += paths.len()
return v * s
# A053016
platonic_graph_info = [4, 6, 8, 12, 20]
# A268283
print([directed_Hamiltonian_cycle(i) for i in platonic_graph_info])
# A358960
print([directed_Hamiltonian_path(i) for i in platonic_graph_info])
出力結果
[6, 12, 32, 60, 2560]
[24, 144, 240, 3240, 75840]