和と差の積を用いた素因数分解
nを素因数分解しようとすれば、√n 以下の素数を順番に割る方法もあるが、
受験数学では、和と差の積を用いた方法を使う方が速い場合が多い。
ここでは、後者の方法を実装してみた。
(ただし、偶数の場合は、2で割り続ければ、奇数になるので、
奇数の場合の素因数分解について考える。)
def is_square(n)
n == Math.sqrt(n).to_i ** 2
end
def A(n)
a = Math.sqrt(n).ceil
while !is_square(a * a - n)
a += 1
end
b = Math.sqrt(a * a - n).to_i
c, d = a - b, a + b
return [A(c), A(d)] if c > 1
[d]
end
n = 200
3.step(2 * n - 1, 2){|i| p [i, A(i)]}
出力結果
[3, [3]]
[5, [5]]
[7, [7]]
[9, [[3], [3]]]
[11, [11]]
[13, [13]]
[15, [[3], [5]]]
[17, [17]]
[19, [19]]
[21, [[3], [7]]]
[23, [23]]
[25, [[5], [5]]]
[27, [[3], [[3], [3]]]]
[29, [29]]
[31, [31]]
[33, [[3], [11]]]
[35, [[5], [7]]]
[37, [37]]
[39, [[3], [13]]]
[41, [41]]
[43, [43]]
[45, [[5], [[3], [3]]]]
[47, [47]]
[49, [[7], [7]]]
[51, [[3], [17]]]
[53, [53]]
[55, [[5], [11]]]
[57, [[3], [19]]]
[59, [59]]
[61, [61]]
[63, [[7], [[3], [3]]]]
[65, [[5], [13]]]
[67, [67]]
[69, [[3], [23]]]
[71, [71]]
[73, [73]]
[75, [[5], [[3], [5]]]]
[77, [[7], [11]]]
[79, [79]]
[81, [[[3], [3]], [[3], [3]]]]
[83, [83]]
[85, [[5], [17]]]
[87, [[3], [29]]]
[89, [89]]
[91, [[7], [13]]]
[93, [[3], [31]]]
[95, [[5], [19]]]
[97, [97]]
[99, [[[3], [3]], [11]]]
[101, [101]]
[103, [103]]
[105, [[7], [[3], [5]]]]
[107, [107]]
[109, [109]]
[111, [[3], [37]]]
[113, [113]]
[115, [[5], [23]]]
[117, [[[3], [3]], [13]]]
[119, [[7], [17]]]
[121, [[11], [11]]]
[123, [[3], [41]]]
[125, [[5], [[5], [5]]]]
[127, [127]]
[129, [[3], [43]]]
[131, [131]]
[133, [[7], [19]]]
[135, [[[3], [3]], [[3], [5]]]]
[137, [137]]
[139, [139]]
[141, [[3], [47]]]
[143, [[11], [13]]]
[145, [[5], [29]]]
[147, [[7], [[3], [7]]]]
[149, [149]]
[151, [151]]
[153, [[[3], [3]], [17]]]
[155, [[5], [31]]]
[157, [157]]
[159, [[3], [53]]]
[161, [[7], [23]]]
[163, [163]]
[165, [[11], [[3], [5]]]]
[167, [167]]
[169, [[13], [13]]]
[171, [[[3], [3]], [19]]]
[173, [173]]
[175, [[7], [[5], [5]]]]
[177, [[3], [59]]]
[179, [179]]
[181, [181]]
[183, [[3], [61]]]
[185, [[5], [37]]]
[187, [[11], [17]]]
[189, [[[3], [3]], [[3], [7]]]]
[191, [191]]
[193, [193]]
[195, [[13], [[3], [5]]]]
[197, [197]]
[199, [199]]
[201, [[3], [67]]]
[203, [[7], [29]]]
[205, [[5], [41]]]
[207, [[[3], [3]], [23]]]
[209, [[11], [19]]]
[211, [211]]
[213, [[3], [71]]]
[215, [[5], [43]]]
[217, [[7], [31]]]
[219, [[3], [73]]]
[221, [[13], [17]]]
[223, [223]]
[225, [[[3], [5]], [[3], [5]]]]
[227, [227]]
[229, [229]]
[231, [[11], [[3], [7]]]]
[233, [233]]
[235, [[5], [47]]]
[237, [[3], [79]]]
[239, [239]]
[241, [241]]
[243, [[[3], [3]], [[3], [[3], [3]]]]]
[245, [[7], [[5], [7]]]]
[247, [[13], [19]]]
[249, [[3], [83]]]
[251, [251]]
[253, [[11], [23]]]
[255, [[[3], [5]], [17]]]
[257, [257]]
[259, [[7], [37]]]
[261, [[[3], [3]], [29]]]
[263, [263]]
[265, [[5], [53]]]
[267, [[3], [89]]]
[269, [269]]
[271, [271]]
[273, [[13], [[3], [7]]]]
[275, [[11], [[5], [5]]]]
[277, [277]]
[279, [[[3], [3]], [31]]]
[281, [281]]
[283, [283]]
[285, [[[3], [5]], [19]]]
[287, [[7], [41]]]
[289, [[17], [17]]]
[291, [[3], [97]]]
[293, [293]]
[295, [[5], [59]]]
[297, [[11], [[3], [[3], [3]]]]]
[299, [[13], [23]]]
[301, [[7], [43]]]
[303, [[3], [101]]]
[305, [[5], [61]]]
[307, [307]]
[309, [[3], [103]]]
[311, [311]]
[313, [313]]
[315, [[[3], [5]], [[3], [7]]]]
[317, [317]]
[319, [[11], [29]]]
[321, [[3], [107]]]
[323, [[17], [19]]]
[325, [[13], [[5], [5]]]]
[327, [[3], [109]]]
[329, [[7], [47]]]
[331, [331]]
[333, [[[3], [3]], [37]]]
[335, [[5], [67]]]
[337, [337]]
[339, [[3], [113]]]
[341, [[11], [31]]]
[343, [[7], [[7], [7]]]]
[345, [[[3], [5]], [23]]]
[347, [347]]
[349, [349]]
[351, [[13], [[3], [[3], [3]]]]]
[353, [353]]
[355, [[5], [71]]]
[357, [[17], [[3], [7]]]]
[359, [359]]
[361, [[19], [19]]]
[363, [[11], [[3], [11]]]]
[365, [[5], [73]]]
[367, [367]]
[369, [[[3], [3]], [41]]]
[371, [[7], [53]]]
[373, [373]]
[375, [[[3], [5]], [[5], [5]]]]
[377, [[13], [29]]]
[379, [379]]
[381, [[3], [127]]]
[383, [383]]
[385, [[11], [[5], [7]]]]
[387, [[[3], [3]], [43]]]
[389, [389]]
[391, [[17], [23]]]
[393, [[3], [131]]]
[395, [[5], [79]]]
[397, [397]]
[399, [[19], [[3], [7]]]]
0 件のコメント:
コメントを投稿
注: コメントを投稿できるのは、このブログのメンバーだけです。