整数列のLINKS の編集(28)
https://oeis.org/A006571
https://oeis.org/A030200
のLINKS を編集しました。
2016年5月29日日曜日
2016年5月28日土曜日
160528(2)
Ruby
Bell number(2)
せきゅーんさんの記事(http://integers.hatenablog.com/entry/2016/05/28/025945)を見て、
Bell number n mod n を計算しようと思った。
Bell number n mod n を計算しようと思った。
オンライン整数列大辞典の
A166226(http://oeis.org/A166226/list)
と比較し、答え合わせしてみる。
def bell(n)
return 1 if n == 0
i = 1
bell = [1]
while i < n
next_bell = [bell[-1]]
# Bell triangle
i.times{|j| next_bell[j + 1] = next_bell[j] + bell[j]}
bell = next_bell
i += 1
end
bell[-1]
end
def A166226(n)
(1..n).map{|i| bell(i) % i}
end
ary = A166226(85)
# OEIS A166226のデータ
ary0 =
[0,0,2,3,2,5,2,4,6,5,2,1,2,12,5,3,2,13,2,12,15,5,
2,9,3,18,10,3,2,27,2,12,4,5,0,1,2,24,28,27,2,23,2,
8,5,5,2,33,24,20,49,39,2,5,27,28,34,5,2,57,2,36,6,
51,47,19,2,52,15,25,2,49,2,42,22,71,59,19,2,44,23,
5,2,65,84]
# 一致の確認
p ary == ary0
2016年5月27日金曜日
2016年5月26日木曜日
2016年5月24日火曜日
160524(3)
Ruby
A001826(http://oeis.org/A001826/list)、
A001842(http://oeis.org/A001842/list)、
A002654(http://oeis.org/A002654/list)
と比較し、答え合わせしてみる。
A002654(http://oeis.org/A002654/list)
と比較し、答え合わせしてみる。
def r1(n)
(1..n).select{|i| n % i == 0 && i % 4 == 1}.size
end
def r3(n)
(1..n).select{|i| n % i == 0 && i % 4 == 3}.size
end
def A001826(n)
(1..n).map{|i| r1(i)}
end
def A001842(n)
# 0から始まる
(0..n).map{|i| r3(i)}
end
def A002654(n)
a, b = A001826(n), A001842(n)[1..-1]
(0..n - 1).map{|i| a[i] - b[i]}
end
ary = A001826(105)
# OEIS A001826のデータ
ary0 =
[1,1,1,1,2,1,1,1,2,2,1,1,2,1,2,1,2,2,1,2,2,1,1,1,
3,2,2,1,2,2,1,1,2,2,2,2,2,1,2,2,2,2,1,1,4,1,1,1,2,
3,2,2,2,2,2,1,2,2,1,2,2,1,3,1,4,2,1,2,2,2,1,2,2,2,
3,1,2,2,1,2,3,2,1,2,4,1,2,1,2,4,2,1,2,1,2,1,2,2,3,
3,2,2,1,2,4]
# 一致の確認
p ary == ary0
ary = A001842(86)
# OEIS A001842のデータ
ary0 =
[0,0,0,1,0,0,1,1,0,1,0,1,1,0,1,2,0,0,1,1,0,2,1,1,
1,0,0,2,1,0,2,1,0,2,0,2,1,0,1,2,0,0,2,1,1,2,1,1,1,
1,0,2,0,0,2,2,1,2,0,1,2,0,1,3,0,0,2,1,0,2,2,1,1,0,
0,3,1,2,2,1,0,2,0,1,2,0,1]
# 一致の確認
p ary == ary0
ary = A002654(105)
# OEIS A002654のデータ
ary0 =
[1,1,0,1,2,0,0,1,1,2,0,0,2,0,0,1,2,1,0,2,0,0,0,0,
3,2,0,0,2,0,0,1,0,2,0,1,2,0,0,2,2,0,0,0,2,0,0,0,1,
3,0,2,2,0,0,0,0,2,0,0,2,0,0,1,4,0,0,2,0,0,0,1,2,2,
0,0,0,0,0,2,1,2,0,0,4,0,0,0,2,2,0,0,0,0,0,0,2,1,0,
3,2,0,0,2,0]
# 一致の確認
p ary == ary0
出力結果
true
true
true
160524
整数列のLINKS の編集(20)
https://oeis.org/A140445
https://oeis.org/A140445
https://oeis.org/A140446
https://oeis.org/A272816
https://oeis.org/A153419
のLINKS を編集しました。
https://oeis.org/A153419
のLINKS を編集しました。
2016年5月22日日曜日
160522(3)
Ruby
オイラーの五角数定理を使うと高速に求まる。
オンライン整数列大辞典の
A010815(http://oeis.org/A010815/list)
と比較し、答え合わせしてみる。
def p0(n)
(3 * n * n - n) / 2
end
def p1(n)
(3 * n * n + n) / 2
end
def A010815(n)
ary = Array.new(n + 1, 0)
ary[0] = 1
i = 1
j = p0(i)
while j <= n
ary[j] = (-1) ** i
i += 1
j = p0(i)
end
i = 1
j = p1(i)
while j <= n
ary[j] = (-1) ** i
i += 1
j = p1(i)
end
ary
end
ary = A010815(92)
# OEIS A010815のデータ
ary0 =
[1,-1,-1,0,0,1,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,
1,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
# 一致の確認
p ary == ary0
2016年5月21日土曜日
2016年5月20日金曜日
160520
Ruby
オンライン整数列大辞典の
A010815(http://oeis.org/A010815/list)
と比較し、答え合わせしてみる。
# m次以下を取り出す
def mul(f_ary, b_ary, m)
s1, s2 = f_ary.size, b_ary.size
ary = Array.new(s1 + s2 - 1, 0)
(0..s1 - 1).each{|i|
(0..s2 - 1).each{|j|
ary[i + j] += f_ary[i] * b_ary[j]
}
}
ary[0..m]
end
def A010815(n)
ary = [1]
(1..n).each{|i|
b_ary = Array.new(i + 1, 0)
b_ary[0], b_ary[-1] = 1, -1
ary = mul(ary, b_ary, n)
}
ary
end
ary = A010815(92)
# OEIS A010815のデータ
ary0 =
[1,-1,-1,0,0,1,0,1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,
1,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
# 一致の確認
p ary == ary0
2016年5月19日木曜日
160519
Ruby
オンライン整数列大辞典の
A000179(http://oeis.org/A000179/list)
と比較し、答え合わせしてみる。
def a(n)
return 1 if n <= 1
(1..n).inject(:*)
end
def c(n, r)
r = n - r if r > n - r
return 0 if r < 0
return 1 if r == 0
return (n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def f(n)
(0..n).inject(0){|s, i| s += (-1) ** i * a(n - i) * c(2 * n - i, i) * 2 * n / (2 * n - i)}
end
def A000179(n)
ary = [1, 0]
return ary[0..n] if n <= 1
ary + (2..n).map{|i| f(i)}
end
ary = A000179(25)
# OEIS A000179のデータ
ary0 =
[1,0,0,1,2,13,80,579,4738,43387,439792,4890741,
59216642,775596313,10927434464,164806435783,
2649391469058,45226435601207,817056406224416,
15574618910994665,312400218671253762,
6577618644576902053,145051250421230224304,
3343382818203784146955,80399425364623070680706,
2013619745874493923699123]
# 一致の確認
p ary == ary0
2016年5月18日水曜日
160518
Ruby
x^(2 + 2) + (x^5 + x^13 + x^17 + … )(x^3 + x^7 + x^11 + x^19 + … )
= x^4 + x^8 + x^12 + 2x^16 + 2x^20 + 3x^24 + …
x^(4 * n) の係数が正
ということが成り立つとして、
その係数を列挙してみる。
オンライン整数列大辞典の
A069360(http://oeis.org/A069360/list)
と比較し、答え合わせしてみる。
require 'prime'
# m次以下を取り出す
def mul(f_ary, b_ary, m)
s1, s2 = f_ary.size, b_ary.size
ary = Array.new(s1 + s2 - 1, 0)
s10 = [s1 - 1, m].min
(0..s10).each{|i|
s20 = [s2 - 1, m - i].min
(0..s20).each{|j|
ary[i + j] += f_ary[i] * b_ary[j]
}
}
ary
end
def A069360(n)
m = 4 * n
ary1 = Array.new(m + 1, 0)
Prime.each(m).select{|i| i % 4 == 1}.each{|i| ary1[i] = 1}
ary3 = Array.new(m + 1, 0)
Prime.each(m).select{|i| i % 4 == 3}.each{|i| ary3[i] = 1}
a = mul(ary1, ary3, m)[0..m]
a.delete(0)
# (2 + 2) / 2 = 2 * 1の分
[1] + a
end
ary = A069360(80)
# OEIS A069360のデータ
ary0 =
[1,1,1,2,2,3,2,2,4,3,3,5,3,3,6,5,2,6,5,4,8,4,4,7,
6,5,8,7,6,12,5,3,9,5,7,11,5,4,11,8,5,13,6,7,14,8,
5,11,9,8,14,7,6,13,9,7,12,7,9,18,9,6,16,8,10,16,9,
7,16,14,8,17,8,8,21,10,8,17,10,11]
# 一致の確認
p ary == ary0
2016年5月17日火曜日
160517(2)
Ruby
Goldbach's conjecture(3)
n = 10 ** i のとき、ペアの数を数えてみる。
出力結果
[2, 6, 28, 127, 810, 5402, 38807]
上は短いコードだが大変遅い。
ちなみに、次のコードはかなり速い。
出力結果
[2, 6, 28, 127, 810, 5402, 38807, 291400]
Goldbach's conjecture(3)
n = 10 ** i のとき、ペアの数を数えてみる。
require'prime'
def f(n)
Prime.each(n / 2).count{|i| (n - i).prime?}
end
def A065577(n)
(1..n).map{|i| f(10 ** i)}
end
p A065577(7)
出力結果
[2, 6, 28, 127, 810, 5402, 38807]
上は短いコードだが大変遅い。
ちなみに、次のコードはかなり速い。
def p_table(n)
ary = Array.new(n + 1, true)
ary[0], ary[1] = false, false
i = 2
while i * i <= n
if ary[i]
j = i + i
while j <= n
ary[j] = false
j += i
end
end
i += 1
end
ary
end
def f(n)
a = p_table(n)
(1..n / 2).count{|i| a[i] && a[n - i] == true}
end
def A065577(n)
(1..n).map{|i| f(10 ** i)}
end
p A065577(8)
出力結果
[2, 6, 28, 127, 810, 5402, 38807, 291400]
160517
Ruby
ペアの数を数えてみた。、
オンライン整数列大辞典の
A061358(http://oeis.org/A061358/list)
と比較し、答え合わせしてみる。
require'prime'
def A061358(n)
(0..n).map{|i| Prime.each(i / 2).count{|j| (i - j).prime?}}
end
ary = A061358(105)
# OEIS A061358のデータ
ary0 =
[0,0,0,0,1,1,1,1,1,1,2,0,1,1,2,1,2,0,2,1,2,1,3,0,
3,1,3,0,2,0,3,1,2,1,4,0,4,0,2,1,3,0,4,1,3,1,4,0,5,
1,4,0,3,0,5,1,3,0,4,0,6,1,3,1,5,0,6,0,2,1,5,0,6,1,
5,1,5,0,7,0,4,1,5,0,8,1,5,0,4,0,9,1,4,0,5,0,7,0,3,
1,6,0,8,1,5,1]
# 一致の確認
p ary == ary0
2016年5月16日月曜日
160516(4)
Ruby
(Σx^p)^3 の係数について、
オンライン整数列大辞典の
A098238(http://oeis.org/A098238/list)
と比較し、答え合わせしてみる。
require 'prime'
# m次以下を取り出す
def mul(f_ary, b_ary, m)
s1, s2 = f_ary.size, b_ary.size
ary = Array.new(s1 + s2 - 1, 0)
s10 = [s1 - 1, m].min
(0..s10).each{|i|
s20 = [s2 - 1, m - i].min
(0..s20).each{|j|
ary[i + j] += f_ary[i] * b_ary[j]
}
}
ary
end
def A098238(n)
ary = Array.new(n + 1, 0)
Prime.each(n).each{|i| ary[i] = 1}
mul(mul(ary, ary, n), ary, n)[0..n]
end
ary = A098238(74)
# OEIS A098238のデータ
ary0 =
[0,0,0,0,0,0,1,3,3,4,6,6,9,6,6,10,9,12,12,12,12,
19,12,21,15,21,18,30,15,30,12,30,18,37,12,39,21,
42,24,46,9,51,18,48,24,54,18,66,21,60,30,67,24,81,
18,75,30,79,18,87,21,87,36,93,15,105,30,105,36,97,
12,120,30,114,36]
# 一致の確認
p ary == ary0
160516(3)
Ruby
この予想を組合せ論っぽく言い換えると次のようになる。
p が素数全体を動くとき、
(Σx^p)^2 の2 よりも大きな偶数次の係数は必ず1 以上。
(Σx^p)^2 の係数について、
オンライン整数列大辞典の
A073610(http://oeis.org/A073610/list)
と比較し、答え合わせしてみる。
require 'prime'
# m次以下を取り出す
def mul(f_ary, b_ary, m)
s1, s2 = f_ary.size, b_ary.size
ary = Array.new(s1 + s2 - 1, 0)
s10 = [s1 - 1, m].min
(0..s10).each{|i|
s20 = [s2 - 1, m - i].min
(0..s20).each{|j|
ary[i + j] += f_ary[i] * b_ary[j]
}
}
ary
end
def A073610(n)
ary = Array.new(n + 1, 0)
Prime.each(n).each{|i| ary[i] = 1}
mul(ary, ary, n)[1..n]
end
ary = A073610(98)
# OEIS A073610のデータ
ary0 =
[0,0,0,1,2,1,2,2,2,3,0,2,2,3,2,4,0,4,2,4,2,5,0,6,
2,5,0,4,0,6,2,4,2,7,0,8,0,3,2,6,0,8,2,6,2,7,0,10,
2,8,0,6,0,10,2,6,0,7,0,12,2,5,2,10,0,12,0,4,2,10,
0,12,2,9,2,10,0,14,0,8,2,9,0,16,2,9,0,8,0,18,2,8,
0,9,0,14,0,6]
# 一致の確認
p ary == ary0
160516(2)
Ruby
獣の数字(2)
2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 = 77
2^2 + 3^2 + 5^2 + 7^2 + 11^2 + 13^2 + 17^2 = 666
が成り立つ。
他にp 以下の素数のn 乗の和がゾロ目になる数を探してみたが見つからなかった。
出力結果
[1, 2, 2]
[1, 3, 5]
[1, 19, 77]
[2, 2, 4]
[2, 17, 666]
[3, 2, 8]
獣の数字(2)
2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 = 77
2^2 + 3^2 + 5^2 + 7^2 + 11^2 + 13^2 + 17^2 = 666
が成り立つ。
他にp 以下の素数のn 乗の和がゾロ目になる数を探してみたが見つからなかった。
require 'prime'
(1..100).each{|n|
s = 0
Prime.each(10 ** 4).each{|i|
s += i ** n
p [n, i, s] if s.to_s.split('').to_a.uniq.size == 1
}
}
出力結果
[1, 2, 2]
[1, 3, 5]
[1, 19, 77]
[2, 2, 4]
[2, 17, 666]
[3, 2, 8]
160516
Ruby
獣の数字(1)
2^2 + 3^2 + 5^2 + 7^2 + 11^2 + 13^2 + 17^2 = 666
が成り立つ。
他にp 以下の素数の二乗の和がゾロ目になる数を探してみたが見つからなかった。
出力結果
[2, 4]
[17, 666]
獣の数字(1)
2^2 + 3^2 + 5^2 + 7^2 + 11^2 + 13^2 + 17^2 = 666
が成り立つ。
他にp 以下の素数の二乗の和がゾロ目になる数を探してみたが見つからなかった。
require 'prime'
s = 0
Prime.each(10 ** 8).each{|i|
s += i * i
p [i, s] if s.to_s.split('').to_a.uniq.size == 1
}
出力結果
[2, 4]
[17, 666]
2016年5月15日日曜日
160515(4)
Ruby
Two refinements of Lagrange's four-square theorem
せきゅーんさんのブログに紹介があった
以下のプレプリントに興味を持った。
https://arxiv.org/pdf/1605.03074v2.pdf
任意の自然数n に対し、
ある整数x, y, z, w が存在し、
n = x^2 + y^2 + z^2 + w^2,
x + y + z + w は平方数
とできることを証明している。
例えば、
160515 = 37249 + 39601 + 40401 + 43264 = 193^2 + (-199)^2 + (-201)^2 + 208^2,
193 - 199 - 201 + 208 = 1 = 1^2
とできる。
各n に対し、このようなx, y, z, w を見つけてみた。
出力結果
[1, [[0, 0, 0, 1]]]
[2, [[0, 0, 1, -1]]]
[3, [[0, 1, 1, -1]]]
[4, [[1, 1, 1, 1]]]
[5, [[0, 0, -1, 2]]]
[6, [[0, 1, 1, 2]]]
[7, [[1, 1, 1, -2]]]
[8, [[0, 0, 2, 2]]]
[9, [[0, 1, 2, -2]]]
[10, [[0, 0, 1, 3], [1, -1, 2, 2]]]
[11, [[0, -1, -1, 3]]]
[12, [[1, 1, 1, -3]]]
[13, [[0, 0, -2, 3], [-1, 2, 2, -2]]]
[14, [[0, 1, 2, -3]]]
[15, [[1, 1, 2, -3]]]
[16, [[0, 0, 0, 4], [2, 2, 2, -2]]]
[17, [[0, 2, 2, -3]]]
[18, [[0, 0, 3, -3], [0, 1, -1, 4], [1, 2, -2, 3]]]
[19, [[0, 1, 3, -3], [-1, -1, -1, 4]]]
[20, [[1, -1, 3, -3]]]
[21, [[0, -1, -2, 4], [2, 2, 2, 3]]]
[22, [[0, -2, 3, 3], [1, 1, 2, -4]]]
[23, [[1, 2, 3, 3]]]
[24, [[0, 2, 2, -4]]]
[25, [[0, 0, -3, 4], [1, 2, 2, 4]]]
[26, [[0, 0, -1, 5], [0, 1, 3, -4], [2, 2, 3, -3]]]
[27, [[0, 3, 3, 3], [1, 1, 3, 4]]]
[28, [[1, -1, -1, 5], [1, 3, 3, -3]]]
[29, [[0, 2, 3, 4]]]
[30, [[0, 1, -2, 5], [1, 2, -3, 4]]]
[31, [[1, 1, 2, 5], [-2, 3, 3, -3]]]
[32, [[0, 0, 4, -4]]]
[33, [[0, 1, 4, 4], [0, 2, 2, 5], [2, -2, -3, 4]]]
[34, [[0, 3, -3, 4], [1, -1, 4, -4], [1, 2, 2, -5]]]
[35, [[0, 1, 3, 5], [-1, 3, 3, 4]]]
[36, [[1, 1, 3, -5], [3, 3, -3, -3]]]
[37, [[-1, 2, 4, 4], [2, 2, 2, -5]]]
[38, [[0, -1, -1, 6], [0, 2, 3, -5], [2, 3, 3, -4]]]
[39, [[1, 1, 1, 6], [1, 2, 3, -5]]]
[40, [[0, 0, -2, 6], [2, 2, 4, -4]]]
[41, [[0, 0, 4, 5], [0, 1, 2, 6]]]
[42, [[0, 1, 4, -5], [1, -1, -2, 6], [1, 3, 4, -4], [-2, -2, 3, 5]]]
[43, [[0, 3, 3, -5], [1, 1, 4, -5], [3, -3, -3, 4]]]
[44, [[1, -3, -3, 5]]]
[45, [[0, 0, 3, 6], [0, 2, 4, -5], [-1, 2, 2, 6], [-2, 3, 4, 4]]]
[46, [[0, 1, -3, 6], [1, 2, -4, 5]]]
[47, [[1, -1, 3, 6], [2, -3, -3, 5]]]
[48, [[0, 4, 4, -4], [2, 2, 2, -6]]]
[49, [[0, -2, -3, 6], [2, -2, 4, 5]]]
[50, [[0, 0, 5, -5], [0, 3, -4, 5], [1, 2, 3, -6], [3, -3, 4, -4]]]
[51, [[0, 1, 1, 7], [0, 1, 5, -5], [-1, 3, 4, -5]]]
[52, [[-1, -1, -1, 7], [1, -1, 5, -5], [3, 3, 3, -5]]]
[53, [[0, 0, 2, 7], [0, -1, 4, 6], [2, 2, 3, -6]]]
[54, [[0, -1, -2, 7], [0, 3, 3, -6], [1, 1, 4, -6], [2, 3, 4, -5]]]
[55, [[1, -1, 2, 7], [1, -2, 5, 5], [1, 3, 3, -6]]]
[56, [[0, 2, 4, -6]]]
[57, [[1, 2, 4, -6], [-3, 4, 4, 4]]]
[58, [[0, 0, -3, 7], [1, -2, -2, 7], [1, 4, 4, -5], [2, 2, 5, -5], [-2, 3, -3, 6]]]
[59, [[0, -1, 3, 7], [3, -3, 4, 5]]]
[60, [[1, -1, -3, 7], [1, 3, 5, -5]]]
[61, [[0, 0, -5, 6], [0, 3, 4, -6], [2, 2, -2, 7], [-2, 4, 4, -5]]]
[62, [[0, 1, 5, -6], [1, -3, -4, 6]]]
[63, [[1, 1, 5, -6], [1, -2, 3, 7], [2, -3, 5, 5], [3, 3, -3, 6]]]
[64, [[4, 4, 4, 4]]]
[65, [[0, 0, 1, 8], [0, 2, 5, -6], [2, -3, 4, 6]]]
[66, [[0, 1, -4, 7], [0, 4, 5, -5], [1, 2, -5, 6], [2, 2, 3, -7], [3, 4, 4, 5]]]
[67, [[0, -3, -3, 7], [1, 1, -1, 8], [-1, -1, 4, 7]]]
[68, [[1, 3, 3, -7], [3, 3, 5, 5]]]
[69, [[0, -1, 2, 8], [0, -2, 4, 7], [-1, 4, 4, -6], [2, -2, -5, 6]]]
[70, [[0, 3, -5, 6], [-1, -1, -2, 8], [1, 2, 4, -7], [2, 4, 5, 5], [3, 3, 4, 6]]]
[71, [[1, -3, 5, 6], [2, 3, 3, -7]]]
[72, [[0, 0, 6, -6], [0, -2, -2, 8], [2, 4, 4, 6]]]
[73, [[0, 1, 6, -6], [1, 2, -2, 8], [2, 2, 4, -7], [4, 4, -4, 5]]]
[74, [[0, -1, -3, 8], [0, 3, 4, -7], [1, -1, 6, -6], [2, 3, 5, 6]]]
[75, [[0, -1, -5, 7], [-1, -1, 3, 8], [1, 3, 4, -7], [3, -4, 5, 5]]]
[76, [[1, 1, 5, -7], [1, 5, 5, 5], [3, 3, 3, 7]]]
[77, [[0, -2, 3, 8], [-1, 2, 6, -6], [3, 4, -4, 6]]]
[78, [[0, 2, 5, -7], [1, -2, -3, 8], [1, 4, 5, 6], [2, 3, 4, 7]]]
[79, [[1, 2, 5, -7], [3, -3, -5, 6]]]
[80, [[0, 0, -4, 8], [2, 2, 6, 6]]]
[81, [[0, 0, 0, 9], [0, -3, 6, 6], [0, 4, 4, -7], [2, 2, -3, 8], [2, -4, 5, 6]]]
[82, [[1, -1, -4, 8], [1, 3, 6, 6], [1, 4, 4, 7], [2, 2, 5, 7], [4, -4, 5, -5]]]
[83, [[0, 1, -1, 9], [0, 3, 5, -7], [1, 3, -3, 8], [3, 3, -4, 7]]]
[84, [[1, 3, 5, 7]]]
[85, [[0, 0, -6, 7], [-1, -2, 4, 8], [-2, 3, 6, -6], [2, 4, -4, 7]]]
[86, [[0, 1, 6, -7], [0, 5, 5, 6], [2, 3, 3, 8], [3, -4, -5, 6]]]
[87, [[1, 1, -2, 9], [1, 1, 6, -7], [2, -3, -5, 7]]]
[88, [[0, 4, 6, 6], [2, 2, 4, 8]]]
[89, [[0, 2, -2, 9], [0, 2, 6, -7], [0, -3, 4, 8], [1, -4, 6, 6]]]
[90, [[0, 1, -5, 8], [0, 4, 5, 7], [-1, -2, -2, 9], [1, 2, 6, 7], [1, 3, 4, 8], [-2, 5, -5, 6], [3, -3, 6, -6], [3, 4, 4, -7]]]
[91, [[-1, -1, -5, 8], [1, -4, 5, 7], [3, 3, 3, -8], [4, 5, 5, -5]]]
[92, [[-1, -1, -3, 9], [3, 3, 5, -7]]]
[93, [[0, -2, -5, 8], [2, -2, -6, 7], [2, 3, 4, -8], [4, 4, -5, 6]]]
[94, [[0, -2, -3, 9], [0, 3, 6, 7], [1, 2, 5, 8], [2, 4, 5, -7]]]
[95, [[1, 2, -3, 9], [-1, 3, 6, -7], [3, 5, -5, 6]]]
[96, [[0, 4, 4, 8]]]
[97, [[1, 4, 4, -8], [2, 2, 5, -8], [-3, 4, 6, -6]]]
[98, [[0, 0, 7, -7], [0, -1, -4, 9], [0, 3, 5, 8], [-1, 5, 6, 6], [2, 2, 3, 9], [2, 3, 6, -7], [3, -3, -4, 8]]]
[99, [[0, 1, 7, -7], [0, 3, -3, 9], [1, 3, 5, -8], [3, 4, -5, 7]]]
[100, [[1, 1, 7, 7], [1, 3, 3, 9], [1, 5, 5, -7], [5, 5, -5, -5]]]
[101, [[0, 0, -1, 10], [0, -1, -6, 8], [0, -4, 6, 7], [2, -5, 6, 6]]]
[102, [[0, 2, 7, 7], [1, 1, 6, 8], [1, 2, 4, 9], [1, 4, 6, -7], [-2, 3, -5, 8], [4, -5, -5, 6]]]
[103, [[1, -1, -1, 10], [-1, 2, 7, -7], [-2, -3, -3, 9], [2, 5, -5, 7], [3, -3, -6, 7]]]
[104, [[0, 2, 6, 8], [4, -4, 6, -6]]]
[105, [[0, 1, -2, 10], [0, 4, 5, -8], [1, 2, 6, -8], [2, 2, -4, 9], [-2, 4, 6, -7]]]
[106, [[0, 0, -5, 9], [0, 3, 4, 9], [1, -4, -5, 8], [2, 2, 7, -7], [-3, -5, 6, 6], [-4, -4, 5, 7]]]
[107, [[1, 3, -4, 9], [3, 3, -5, 8]]]
[108, [[1, 1, 5, 9], [1, 3, 7, -7], [3, 3, 3, -9], [3, -5, -5, 7]]]
[109, [[0, 3, 6, -8], [-1, 2, -2, 10], [2, 4, -5, 8]]]
[110, [[0, 2, 5, 9], [0, 5, 6, -7], [1, -3, -6, 8], [2, 3, 4, -9], [3, -4, -6, 7]]]
[111, [[1, 1, -3, 10], [-1, -2, -5, 9], [1, -5, 6, 7], [-2, 3, 7, -7], [5, 5, 5, -6]]]
[112, [[2, 2, 2, 10], [-2, 6, 6, 6], [4, 4, 4, -8]]]
[113, [[0, 0, -7, 8], [0, 2, -3, 10], [0, 4, -4, 9], [2, -3, -6, 8], [4, 5, 6, -6]]]
[114, [[0, 1, 7, 8], [0, 4, 7, -7], [1, 2, 3, 10], [1, 4, 4, -9], [2, 2, 5, -9], [-2, 5, 6, 7], [3, 4, 5, -8]]]
[115, [[0, -3, -5, 9], [1, 1, 7, -8], [-1, -4, 7, 7], [1, 5, -5, 8], [3, 3, 4, -9], [4, -5, -5, 7]]]
[116, [[1, 3, 5, -9], [3, -3, 7, -7]]]
[117, [[0, 2, 7, -8], [-1, 4, 6, -8], [-2, -2, 3, 10], [2, 4, 4, -9], [3, 6, 6, -6], [4, 4, -6, 7]]]
[118, [[0, 1, 6, 9], [0, 3, 3, 10], [1, 1, 4, 10], [1, 2, -7, 8], [-2, 4, 7, 7], [2, 5, 5, -8], [3, 3, 6, -8]]]
[119, [[-1, -1, -6, 9], [-1, 3, -3, 10], [2, 3, 5, -9], [3, 5, -6, 7]]]
[120, [[0, 2, 4, 10], [2, 4, 6, -8]]]
[121, [[0, -2, -6, 9], [1, 2, -4, 10], [2, -2, -7, 8]]]
[122, [[0, 3, -7, 8], [0, 4, 5, -9], [1, 2, 6, -9], [-1, 6, 6, -7], [3, -4, -4, 9], [5, -5, 6, -6]]]
[123, [[0, -1, -1, 11], [0, -5, 7, 7], [-1, 3, 7, -8], [1, 4, 5, -9], [-3, 4, 7, -7], [3, -5, -5, 8]]]
[124, [[-1, 5, 7, -7], [3, -3, -5, 9]]]
[125, [[0, 0, -2, 11], [0, 3, -4, 10], [0, -5, 6, 8], [2, 2, 6, -9], [2, 6, -6, 7], [3, 4, -6, 8]]]
[126, [[0, 1, 5, 10], [0, 3, 6, -9], [1, -3, -4, 10], [1, 5, 6, -8], [2, 3, 7, -8], [-2, 4, 5, 9], [4, -5, -6, 7]]]
[127, [[1, -1, -2, 11], [1, 3, 6, -9], [-3, -3, -3, 10]]]
[128, [[0, 0, 8, 8]]]
[129, [[0, 1, 8, -8], [-2, -3, 4, 10], [2, 5, -6, 8]]]
[130, [[0, 0, 7, 9], [1, -1, 8, 8], [1, 2, 2, 11], [1, -2, -5, 10], [1, 4, 7, -8], [-2, 3, 6, 9], [-3, 6, 6, 7], [4, -4, 7, -7], [-4, 5, -5, 8]]]
[131, [[0, 1, -3, 11], [0, -1, -7, 9], [0, 5, 5, -9], [3, -3, -7, 8]]]
[132, [[1, 1, 3, 11], [1, 1, 7, -9], [1, -5, -5, 9], [-3, 5, 7, 7]]]
[133, [[0, 4, 6, -9], [-1, 2, 8, -8], [-1, 4, -4, 10], [2, -2, -2, 11], [2, 2, -5, 10], [-2, 4, 7, -8], [-5, 6, 6, -6]]]
[134, [[0, 2, 3, 11], [0, 2, 7, -9], [1, -4, -6, 9], [3, 3, 4, -10], [3, -5, -6, 8]]]
[135, [[-1, 2, -3, 11], [1, 2, 7, -9], [1, 3, -5, 10], [1, -6, 7, 7], [2, -5, -5, 9], [3, 3, -6, 9], [5, 5, 6, -7]]]
[136, [[0, 0, 6, 10], [0, 6, 6, -8], [2, 2, 8, -8], [2, 4, 4, -10]]]
[137, [[1, 6, -6, 8], [2, 4, -6, 9], [4, 6, 6, -7]]]
[138, [[0, 1, 4, 11], [0, 5, 7, -8], [1, -1, 6, 10], [1, 3, 8, -8], [-2, -2, -3, 11], [2, -2, 7, 9], [2, 3, 5, -10], [-2, 6, 7, -7], [3, -4, -7, 8], [4, 4, 5, -9]]]
[139, [[0, 3, 7, -9], [1, 1, -4, 11], [-1, -5, 7, 8], [4, 5, 7, -7]]]
[140, [[-1, 3, 3, 11], [1, -3, -7, 9], [3, 5, 5, -9]]]
[141, [[0, 2, -4, 11], [0, 4, -5, 10], [-1, -2, -6, 10], [-2, 3, 8, -8], [3, 4, 4, -10], [4, -5, -6, 8]]]
[142, [[-1, 2, 4, 11], [1, 4, 5, -10], [-2, 5, -7, 8], [3, 4, 6, -9]]]
[143, [[1, 5, -6, 9], [-2, 3, -3, 11], [2, -3, -7, 9], [3, 3, 5, -10], [3, 6, 7, -7]]]
[144, [[0, 4, 8, -8], [2, 2, 6, -10], [6, 6, -6, -6]]]
[145, [[0, 0, -8, 9], [0, -3, -6, 10], [2, 4, 5, -10], [-3, 6, 6, -8], [4, 4, -7, 8]]]
[146, [[0, 0, 5, 11], [0, 1, 8, -9], [0, -3, -4, 11], [1, 3, 6, -10], [2, 5, 6, -9], [3, -3, 8, 8], [5, -6, -6, 7]]]
[147, [[-1, -1, -1, 12], [1, 1, 8, -9], [-1, 3, -4, 11], [-1, 4, 7, -9], [3, 5, -7, 8]]]
[148, [[1, -1, 5, 11], [3, 3, 7, -9], [5, -5, 7, -7]]]
[149, [[0, -1, -2, 12], [0, 2, 8, -9], [0, -6, 7, 8], [2, 3, 6, -10]]]
[150, [[0, 1, -7, 10], [0, -2, -5, 11], [0, 5, 5, -10], [1, 1, 2, 12], [1, 2, -8, 9], [-1, 6, 7, -8], [-2, 3, 4, 11], [2, 4, 7, -9], [3, -4, -5, 10], [-4, 6, 7, 7], [-5, -5, 6, 8]]]
[151, [[-1, -1, -7, 10], [1, 2, -5, 11], [1, 5, 5, -10], [2, 7, 7, -7], [3, -5, -6, 9]]]
[152, [[0, 2, 2, 12], [0, 4, 6, -10], [4, -6, -6, 8]]]
[153, [[0, 0, -3, 12], [0, -2, -7, 10], [0, 6, -6, 9], [1, -2, -2, 12], [1, 4, 6, -10], [2, -2, -8, 9], [2, 6, -7, 8], [-3, 4, 8, -8]]]
[154, [[0, 1, 3, 12], [0, 3, -8, 9], [1, 2, 7, -10], [1, -4, -4, 11], [-1, 5, 8, -8], [1, 6, 6, -9], [2, -2, 5, 11], [3, -3, 6, 10], [4, -5, -7, 8]]]
[155, [[0, 3, -5, 11], [1, -1, -3, 12], [-1, 3, 8, -9], [-3, -3, 4, 11], [3, 4, -7, 9]]]
[156, [[1, -3, -5, 11], [1, 5, 7, -9], [-3, 7, 7, -7], [5, -5, -5, 9]]]
[157, [[2, 2, 7, -10], [-2, 4, -4, 11], [-2, -5, 8, 8], [-2, 6, 6, -9], [6, 6, 6, 7]]]
[158, [[0, -1, 6, 11], [0, 3, 7, -10], [-1, 2, 3, 12], [2, 3, 8, -9], [-3, 6, -7, 8], [-4, 5, 6, 9]]]
[159, [[1, 3, 7, -10], [-2, -3, -5, 11], [2, 5, -7, 9], [5, 6, 7, 7]]]
[160, [[0, 0, 4, 12], [4, -4, 8, 8]]]
[161, [[0, 1, -4, 12], [0, 5, 6, -10], [2, -2, -3, 12], [-3, -4, 6, 10], [5, 6, 6, 8]]]
[162, [[0, 0, 9, -9], [1, -1, 4, 12], [1, -2, 6, 11], [1, 4, 8, -9], [1, -5, -6, 10], [2, -3, 7, 10], [3, 4, 4, -11], [3, -6, -6, 9], [4, -4, 7, 9]]]
[163, [[0, 1, 9, -9], [-1, 4, -5, 11], [1, 7, -7, 8], [3, -3, -8, 9], [4, 7, 7, 7], [5, 5, 7, 8]]]
[164, [[1, -1, 9, -9], [3, 3, 5, -11], [3, -5, -7, 9]]]
[165, [[0, -1, -8, 10], [0, 4, 7, -10], [-1, 2, -4, 12], [-1, -6, 8, 8], [2, 2, -6, 11], [-2, 4, 8, -9], [2, -5, -6, 10], [4, 6, 7, 8]]]
[166, [[0, -2, 9, 9], [0, 6, 7, -9], [1, 1, 8, -10], [1, -4, -7, 10], [-2, 3, 3, 12], [2, 4, 5, -11], [-2, 7, 7, -8], [4, 5, 5, -10]]]
[167, [[-1, 2, 9, -9], [1, 3, -6, 11], [1, 6, -7, 9], [3, 3, -7, 10], [5, 5, 6, 9]]]
[168, [[0, 2, 8, -10], [2, -2, 4, 12], [-2, 6, 8, -8], [4, 4, 6, -10]]]
[169, [[1, 2, 8, -10], [2, 4, -7, 10], [4, 4, 4, -11], [4, 5, 8, 8], [4, 6, 6, 9]]]
[170, [[0, 0, -7, 11], [0, -1, 5, 12], [0, 5, 8, -9], [-1, -3, -4, 12], [2, 2, 9, -9], [2, 3, 6, -11], [3, -4, 8, 9], [3, 5, 6, -10], [6, -6, 7, -7]]]
[171, [[0, -5, -5, 11], [1, 1, -5, 12], [3, -3, -3, 12], [3, 4, 5, -11], [3, 7, 7, 8], [4, 5, 7, 9]]]
[172, [[1, 1, 1, 13], [1, -1, -7, 11], [1, 3, 9, -9], [1, 5, 5, -11], [-5, 7, 7, 7]]]
[173, [[0, 2, -5, 12], [0, 3, 8, -10], [0, 4, -6, 11], [-1, 6, 6, -10], [-2, 3, -4, 12], [3, 6, 8, 8]]]
[174, [[0, 1, 2, 13], [0, -2, 7, 11], [1, -2, 5, 12], [1, -3, 8, 10], [1, 4, 6, -11], [-2, 5, -8, 9], [3, 4, 7, -10], [5, -6, -7, 8]]]
[175, [[-1, -1, -2, 13], [-1, -2, -7, 11], [1, 5, -7, 10], [-2, 3, 9, -9], [2, 5, 5, -11], [3, 3, 6, -11], [3, 6, 7, 9], [5, 5, 5, 10]]]
[176, [[0, -4, -4, 12], [2, 6, 6, -10]]]
[177, [[0, -2, -2, 13], [0, -7, 8, 8], [2, -3, -8, 10], [2, 4, 6, -11], [4, 4, 8, 9], [4, 5, 6, 10]]]
[178, [[0, 0, 3, 13], [0, -3, -5, 12], [0, 4, 9, -9], [-1, 2, 2, 13], [2, 2, 7, -11], [2, 5, 7, -10], [3, -3, 4, 12], [4, -4, 5, 11], [-4, 7, -7, 8], [5, -5, 8, 8], [-5, 6, 6, 9]]]
[179, [[0, -1, -3, 13], [0, -3, -7, 11], [0, 7, -7, 9], [-1, 3, -5, 12], [3, 5, 8, 9]]]
[180, [[1, -1, 3, 13], [1, 3, 7, -11], [-1, 7, 7, -9], [3, -3, 9, -9], [3, -5, -5, 11], [5, -5, 7, 9]]]
[181, [[0, 0, -9, 10], [-1, 4, 8, -10], [2, 7, 8, 8], [3, 6, 6, 10], [4, 4, 7, 10]]]
[182, [[0, 1, 9, -10], [0, 5, 6, -11], [-1, -1, 6, 12], [-1, 6, 8, -9], [2, -3, 5, 12], [2, -4, 9, 9], [3, 3, 8, -10], [3, -4, 6, 11], [4, -6, -7, 9]]]
[183, [[1, 1, 9, -10], [1, -2, -3, 13], [1, 5, 6, -11], [2, 3, 7, -11], [2, 7, 7, 9], [3, 5, 7, 10], [-6, 7, 7, -7]]]
[184, [[0, -2, 6, 12], [2, 4, 8, -10]]]
[185, [[0, 0, -4, 13], [0, 2, 9, -10], [0, 6, -7, 10], [1, 2, -6, 12], [2, 6, 8, 9], [-3, 4, -4, 12], [6, -6, -7, 8]]]
[186, [[0, -1, 4, 13], [0, 1, -8, 11], [0, 4, 7, -11], [1, 2, -9, 10], [1, -4, -5, 12], [1, 6, 7, -10], [2, -2, 3, 13], [-3, 7, 8, -8], [4, -5, 8, 9], [5, -5, 6, 10]]]
[187, [[1, -1, -4, 13], [-1, -1, -8, 11], [1, 4, 7, -11], [-3, -3, -5, 12], [3, 4, 9, 9], [4, 5, 5, 11], [-5, 7, 7, -8]]]
[188, [[-1, 5, 9, -9], [3, -3, -7, 11]]]
[189, [[0, -2, -8, 11], [0, 3, -6, 12], [2, -2, -9, 10], [-2, 4, -5, 12], [2, 6, 7, 10], [3, 4, 8, 10], [4, 4, 6, 11], [-5, 6, 8, -8], [6, 6, 6, -9]]]
[190, [[0, 3, -9, 10], [1, -2, 4, 13], [1, 2, 8, -11], [1, -3, 6, 12], [1, 5, 8, -10], [2, -4, 7, 11], [-3, 6, -8, 9], [4, -5, 7, 10]]]
[191, [[-1, 3, 9, -10], [2, -3, -3, 13], [2, 5, 9, 9], [3, 5, 6, 11], [5, 6, 7, -9]]]
[192, [[4, 4, 4, -12]]]
[193, [[0, 6, 6, -11], [1, 8, 8, 8], [2, -2, -4, 13], [2, 2, 8, -11], [-2, -3, -6, 12], [2, 5, 8, 10]]]
[194, [[0, -1, -7, 12], [0, 3, 8, -11], [1, -6, -6, 11], [2, 3, 9, -10], [3, 4, 5, -12], [3, -6, -7, 10], [4, -4, 9, -9]]]
[195, [[0, 1, -5, 13], [0, 5, 7, -11], [1, 3, 8, -11], [-1, -5, -5, 12], [1, 7, 8, 9], [3, 4, 7, 11], [4, 7, 7, -9], [5, 5, 8, -9]]]
[196, [[-1, -1, 5, 13], [1, -5, -7, 11], [3, 3, -3, 13], [3, -5, 9, 9], [5, 5, 5, -11], [7, 7, -7, -7]]]
[197, [[-1, 4, -6, 12], [2, 6, 6, 11], [4, 6, 8, -9]]]
[198, [[0, 1, 1, 14], [0, -2, 5, 13], [0, 7, 7, -10], [1, -2, -7, 12], [1, 4, 9, -10], [2, -3, 4, 13], [-2, 3, -8, 11], [2, 5, 5, -12], [-2, 7, 8, -9], [3, 3, 6, -12], [3, -5, 8, 10], [4, 5, 6, -11], [6, -7, -7, 8]]]
[199, [[-1, 2, -5, 13], [1, 6, 9, 9], [1, 7, 7, 10], [2, 5, 7, 11], [3, 3, 9, 10]]]
[200, [[0, 0, 2, 14], [0, 0, 10, -10], [0, 6, 8, -10], [2, 4, 6, -12], [6, -6, 8, 8]]]
Two refinements of Lagrange's four-square theorem
せきゅーんさんのブログに紹介があった
以下のプレプリントに興味を持った。
https://arxiv.org/pdf/1605.03074v2.pdf
任意の自然数n に対し、
ある整数x, y, z, w が存在し、
n = x^2 + y^2 + z^2 + w^2,
x + y + z + w は平方数
とできることを証明している。
例えば、
160515 = 37249 + 39601 + 40401 + 43264 = 193^2 + (-199)^2 + (-201)^2 + 208^2,
193 - 199 - 201 + 208 = 1 = 1^2
とできる。
各n に対し、このようなx, y, z, w を見つけてみた。
def square?(n)
return false if n < 0
Math.sqrt(n).to_i ** 2 == n
end
def f(ary)
x, y, z, w = ary
# マイナス符号のつけかたを考えるのは最小限にとどめる。
[[ x, y, z, w],
[ x, y, z, -w],
[ x, y, -z, w],
[ x, y, -z, -w],
[ x, -y, z, w],
[ x, -y, z, -w],
[ x, -y, -z, w],
[ x, -y, -z, -w],
[-x, y, z, w],
[-x, y, z, -w],
[-x, y, -z, w],
[-x, y, -z, -w],
[-x, -y, z, w],
[-x, -y, z, -w],
[-x, -y, -z, w],
[-x, -y, -z, -w]].each{|a|
return [1, a] if square?(a.inject(:+))
}
[0, ary]
end
def g(n)
ary = []
(0..Math.sqrt(n).to_i).each{|x|
(x..Math.sqrt(n - x * x).to_i).each{|y|
(y..Math.sqrt(n - x * x - y * y).to_i).each{|z|
w2 = n - x * x - y * y - z * z
if w2 >= z * z && square?(w2)
a = f([x, y, z, Math.sqrt(w2).to_i])
ary << a[1] if a[0] == 1
end
}
}
}
ary
end
(1..200).each{|i| p [i, g(i)]}
出力結果
[1, [[0, 0, 0, 1]]]
[2, [[0, 0, 1, -1]]]
[3, [[0, 1, 1, -1]]]
[4, [[1, 1, 1, 1]]]
[5, [[0, 0, -1, 2]]]
[6, [[0, 1, 1, 2]]]
[7, [[1, 1, 1, -2]]]
[8, [[0, 0, 2, 2]]]
[9, [[0, 1, 2, -2]]]
[10, [[0, 0, 1, 3], [1, -1, 2, 2]]]
[11, [[0, -1, -1, 3]]]
[12, [[1, 1, 1, -3]]]
[13, [[0, 0, -2, 3], [-1, 2, 2, -2]]]
[14, [[0, 1, 2, -3]]]
[15, [[1, 1, 2, -3]]]
[16, [[0, 0, 0, 4], [2, 2, 2, -2]]]
[17, [[0, 2, 2, -3]]]
[18, [[0, 0, 3, -3], [0, 1, -1, 4], [1, 2, -2, 3]]]
[19, [[0, 1, 3, -3], [-1, -1, -1, 4]]]
[20, [[1, -1, 3, -3]]]
[21, [[0, -1, -2, 4], [2, 2, 2, 3]]]
[22, [[0, -2, 3, 3], [1, 1, 2, -4]]]
[23, [[1, 2, 3, 3]]]
[24, [[0, 2, 2, -4]]]
[25, [[0, 0, -3, 4], [1, 2, 2, 4]]]
[26, [[0, 0, -1, 5], [0, 1, 3, -4], [2, 2, 3, -3]]]
[27, [[0, 3, 3, 3], [1, 1, 3, 4]]]
[28, [[1, -1, -1, 5], [1, 3, 3, -3]]]
[29, [[0, 2, 3, 4]]]
[30, [[0, 1, -2, 5], [1, 2, -3, 4]]]
[31, [[1, 1, 2, 5], [-2, 3, 3, -3]]]
[32, [[0, 0, 4, -4]]]
[33, [[0, 1, 4, 4], [0, 2, 2, 5], [2, -2, -3, 4]]]
[34, [[0, 3, -3, 4], [1, -1, 4, -4], [1, 2, 2, -5]]]
[35, [[0, 1, 3, 5], [-1, 3, 3, 4]]]
[36, [[1, 1, 3, -5], [3, 3, -3, -3]]]
[37, [[-1, 2, 4, 4], [2, 2, 2, -5]]]
[38, [[0, -1, -1, 6], [0, 2, 3, -5], [2, 3, 3, -4]]]
[39, [[1, 1, 1, 6], [1, 2, 3, -5]]]
[40, [[0, 0, -2, 6], [2, 2, 4, -4]]]
[41, [[0, 0, 4, 5], [0, 1, 2, 6]]]
[42, [[0, 1, 4, -5], [1, -1, -2, 6], [1, 3, 4, -4], [-2, -2, 3, 5]]]
[43, [[0, 3, 3, -5], [1, 1, 4, -5], [3, -3, -3, 4]]]
[44, [[1, -3, -3, 5]]]
[45, [[0, 0, 3, 6], [0, 2, 4, -5], [-1, 2, 2, 6], [-2, 3, 4, 4]]]
[46, [[0, 1, -3, 6], [1, 2, -4, 5]]]
[47, [[1, -1, 3, 6], [2, -3, -3, 5]]]
[48, [[0, 4, 4, -4], [2, 2, 2, -6]]]
[49, [[0, -2, -3, 6], [2, -2, 4, 5]]]
[50, [[0, 0, 5, -5], [0, 3, -4, 5], [1, 2, 3, -6], [3, -3, 4, -4]]]
[51, [[0, 1, 1, 7], [0, 1, 5, -5], [-1, 3, 4, -5]]]
[52, [[-1, -1, -1, 7], [1, -1, 5, -5], [3, 3, 3, -5]]]
[53, [[0, 0, 2, 7], [0, -1, 4, 6], [2, 2, 3, -6]]]
[54, [[0, -1, -2, 7], [0, 3, 3, -6], [1, 1, 4, -6], [2, 3, 4, -5]]]
[55, [[1, -1, 2, 7], [1, -2, 5, 5], [1, 3, 3, -6]]]
[56, [[0, 2, 4, -6]]]
[57, [[1, 2, 4, -6], [-3, 4, 4, 4]]]
[58, [[0, 0, -3, 7], [1, -2, -2, 7], [1, 4, 4, -5], [2, 2, 5, -5], [-2, 3, -3, 6]]]
[59, [[0, -1, 3, 7], [3, -3, 4, 5]]]
[60, [[1, -1, -3, 7], [1, 3, 5, -5]]]
[61, [[0, 0, -5, 6], [0, 3, 4, -6], [2, 2, -2, 7], [-2, 4, 4, -5]]]
[62, [[0, 1, 5, -6], [1, -3, -4, 6]]]
[63, [[1, 1, 5, -6], [1, -2, 3, 7], [2, -3, 5, 5], [3, 3, -3, 6]]]
[64, [[4, 4, 4, 4]]]
[65, [[0, 0, 1, 8], [0, 2, 5, -6], [2, -3, 4, 6]]]
[66, [[0, 1, -4, 7], [0, 4, 5, -5], [1, 2, -5, 6], [2, 2, 3, -7], [3, 4, 4, 5]]]
[67, [[0, -3, -3, 7], [1, 1, -1, 8], [-1, -1, 4, 7]]]
[68, [[1, 3, 3, -7], [3, 3, 5, 5]]]
[69, [[0, -1, 2, 8], [0, -2, 4, 7], [-1, 4, 4, -6], [2, -2, -5, 6]]]
[70, [[0, 3, -5, 6], [-1, -1, -2, 8], [1, 2, 4, -7], [2, 4, 5, 5], [3, 3, 4, 6]]]
[71, [[1, -3, 5, 6], [2, 3, 3, -7]]]
[72, [[0, 0, 6, -6], [0, -2, -2, 8], [2, 4, 4, 6]]]
[73, [[0, 1, 6, -6], [1, 2, -2, 8], [2, 2, 4, -7], [4, 4, -4, 5]]]
[74, [[0, -1, -3, 8], [0, 3, 4, -7], [1, -1, 6, -6], [2, 3, 5, 6]]]
[75, [[0, -1, -5, 7], [-1, -1, 3, 8], [1, 3, 4, -7], [3, -4, 5, 5]]]
[76, [[1, 1, 5, -7], [1, 5, 5, 5], [3, 3, 3, 7]]]
[77, [[0, -2, 3, 8], [-1, 2, 6, -6], [3, 4, -4, 6]]]
[78, [[0, 2, 5, -7], [1, -2, -3, 8], [1, 4, 5, 6], [2, 3, 4, 7]]]
[79, [[1, 2, 5, -7], [3, -3, -5, 6]]]
[80, [[0, 0, -4, 8], [2, 2, 6, 6]]]
[81, [[0, 0, 0, 9], [0, -3, 6, 6], [0, 4, 4, -7], [2, 2, -3, 8], [2, -4, 5, 6]]]
[82, [[1, -1, -4, 8], [1, 3, 6, 6], [1, 4, 4, 7], [2, 2, 5, 7], [4, -4, 5, -5]]]
[83, [[0, 1, -1, 9], [0, 3, 5, -7], [1, 3, -3, 8], [3, 3, -4, 7]]]
[84, [[1, 3, 5, 7]]]
[85, [[0, 0, -6, 7], [-1, -2, 4, 8], [-2, 3, 6, -6], [2, 4, -4, 7]]]
[86, [[0, 1, 6, -7], [0, 5, 5, 6], [2, 3, 3, 8], [3, -4, -5, 6]]]
[87, [[1, 1, -2, 9], [1, 1, 6, -7], [2, -3, -5, 7]]]
[88, [[0, 4, 6, 6], [2, 2, 4, 8]]]
[89, [[0, 2, -2, 9], [0, 2, 6, -7], [0, -3, 4, 8], [1, -4, 6, 6]]]
[90, [[0, 1, -5, 8], [0, 4, 5, 7], [-1, -2, -2, 9], [1, 2, 6, 7], [1, 3, 4, 8], [-2, 5, -5, 6], [3, -3, 6, -6], [3, 4, 4, -7]]]
[91, [[-1, -1, -5, 8], [1, -4, 5, 7], [3, 3, 3, -8], [4, 5, 5, -5]]]
[92, [[-1, -1, -3, 9], [3, 3, 5, -7]]]
[93, [[0, -2, -5, 8], [2, -2, -6, 7], [2, 3, 4, -8], [4, 4, -5, 6]]]
[94, [[0, -2, -3, 9], [0, 3, 6, 7], [1, 2, 5, 8], [2, 4, 5, -7]]]
[95, [[1, 2, -3, 9], [-1, 3, 6, -7], [3, 5, -5, 6]]]
[96, [[0, 4, 4, 8]]]
[97, [[1, 4, 4, -8], [2, 2, 5, -8], [-3, 4, 6, -6]]]
[98, [[0, 0, 7, -7], [0, -1, -4, 9], [0, 3, 5, 8], [-1, 5, 6, 6], [2, 2, 3, 9], [2, 3, 6, -7], [3, -3, -4, 8]]]
[99, [[0, 1, 7, -7], [0, 3, -3, 9], [1, 3, 5, -8], [3, 4, -5, 7]]]
[100, [[1, 1, 7, 7], [1, 3, 3, 9], [1, 5, 5, -7], [5, 5, -5, -5]]]
[101, [[0, 0, -1, 10], [0, -1, -6, 8], [0, -4, 6, 7], [2, -5, 6, 6]]]
[102, [[0, 2, 7, 7], [1, 1, 6, 8], [1, 2, 4, 9], [1, 4, 6, -7], [-2, 3, -5, 8], [4, -5, -5, 6]]]
[103, [[1, -1, -1, 10], [-1, 2, 7, -7], [-2, -3, -3, 9], [2, 5, -5, 7], [3, -3, -6, 7]]]
[104, [[0, 2, 6, 8], [4, -4, 6, -6]]]
[105, [[0, 1, -2, 10], [0, 4, 5, -8], [1, 2, 6, -8], [2, 2, -4, 9], [-2, 4, 6, -7]]]
[106, [[0, 0, -5, 9], [0, 3, 4, 9], [1, -4, -5, 8], [2, 2, 7, -7], [-3, -5, 6, 6], [-4, -4, 5, 7]]]
[107, [[1, 3, -4, 9], [3, 3, -5, 8]]]
[108, [[1, 1, 5, 9], [1, 3, 7, -7], [3, 3, 3, -9], [3, -5, -5, 7]]]
[109, [[0, 3, 6, -8], [-1, 2, -2, 10], [2, 4, -5, 8]]]
[110, [[0, 2, 5, 9], [0, 5, 6, -7], [1, -3, -6, 8], [2, 3, 4, -9], [3, -4, -6, 7]]]
[111, [[1, 1, -3, 10], [-1, -2, -5, 9], [1, -5, 6, 7], [-2, 3, 7, -7], [5, 5, 5, -6]]]
[112, [[2, 2, 2, 10], [-2, 6, 6, 6], [4, 4, 4, -8]]]
[113, [[0, 0, -7, 8], [0, 2, -3, 10], [0, 4, -4, 9], [2, -3, -6, 8], [4, 5, 6, -6]]]
[114, [[0, 1, 7, 8], [0, 4, 7, -7], [1, 2, 3, 10], [1, 4, 4, -9], [2, 2, 5, -9], [-2, 5, 6, 7], [3, 4, 5, -8]]]
[115, [[0, -3, -5, 9], [1, 1, 7, -8], [-1, -4, 7, 7], [1, 5, -5, 8], [3, 3, 4, -9], [4, -5, -5, 7]]]
[116, [[1, 3, 5, -9], [3, -3, 7, -7]]]
[117, [[0, 2, 7, -8], [-1, 4, 6, -8], [-2, -2, 3, 10], [2, 4, 4, -9], [3, 6, 6, -6], [4, 4, -6, 7]]]
[118, [[0, 1, 6, 9], [0, 3, 3, 10], [1, 1, 4, 10], [1, 2, -7, 8], [-2, 4, 7, 7], [2, 5, 5, -8], [3, 3, 6, -8]]]
[119, [[-1, -1, -6, 9], [-1, 3, -3, 10], [2, 3, 5, -9], [3, 5, -6, 7]]]
[120, [[0, 2, 4, 10], [2, 4, 6, -8]]]
[121, [[0, -2, -6, 9], [1, 2, -4, 10], [2, -2, -7, 8]]]
[122, [[0, 3, -7, 8], [0, 4, 5, -9], [1, 2, 6, -9], [-1, 6, 6, -7], [3, -4, -4, 9], [5, -5, 6, -6]]]
[123, [[0, -1, -1, 11], [0, -5, 7, 7], [-1, 3, 7, -8], [1, 4, 5, -9], [-3, 4, 7, -7], [3, -5, -5, 8]]]
[124, [[-1, 5, 7, -7], [3, -3, -5, 9]]]
[125, [[0, 0, -2, 11], [0, 3, -4, 10], [0, -5, 6, 8], [2, 2, 6, -9], [2, 6, -6, 7], [3, 4, -6, 8]]]
[126, [[0, 1, 5, 10], [0, 3, 6, -9], [1, -3, -4, 10], [1, 5, 6, -8], [2, 3, 7, -8], [-2, 4, 5, 9], [4, -5, -6, 7]]]
[127, [[1, -1, -2, 11], [1, 3, 6, -9], [-3, -3, -3, 10]]]
[128, [[0, 0, 8, 8]]]
[129, [[0, 1, 8, -8], [-2, -3, 4, 10], [2, 5, -6, 8]]]
[130, [[0, 0, 7, 9], [1, -1, 8, 8], [1, 2, 2, 11], [1, -2, -5, 10], [1, 4, 7, -8], [-2, 3, 6, 9], [-3, 6, 6, 7], [4, -4, 7, -7], [-4, 5, -5, 8]]]
[131, [[0, 1, -3, 11], [0, -1, -7, 9], [0, 5, 5, -9], [3, -3, -7, 8]]]
[132, [[1, 1, 3, 11], [1, 1, 7, -9], [1, -5, -5, 9], [-3, 5, 7, 7]]]
[133, [[0, 4, 6, -9], [-1, 2, 8, -8], [-1, 4, -4, 10], [2, -2, -2, 11], [2, 2, -5, 10], [-2, 4, 7, -8], [-5, 6, 6, -6]]]
[134, [[0, 2, 3, 11], [0, 2, 7, -9], [1, -4, -6, 9], [3, 3, 4, -10], [3, -5, -6, 8]]]
[135, [[-1, 2, -3, 11], [1, 2, 7, -9], [1, 3, -5, 10], [1, -6, 7, 7], [2, -5, -5, 9], [3, 3, -6, 9], [5, 5, 6, -7]]]
[136, [[0, 0, 6, 10], [0, 6, 6, -8], [2, 2, 8, -8], [2, 4, 4, -10]]]
[137, [[1, 6, -6, 8], [2, 4, -6, 9], [4, 6, 6, -7]]]
[138, [[0, 1, 4, 11], [0, 5, 7, -8], [1, -1, 6, 10], [1, 3, 8, -8], [-2, -2, -3, 11], [2, -2, 7, 9], [2, 3, 5, -10], [-2, 6, 7, -7], [3, -4, -7, 8], [4, 4, 5, -9]]]
[139, [[0, 3, 7, -9], [1, 1, -4, 11], [-1, -5, 7, 8], [4, 5, 7, -7]]]
[140, [[-1, 3, 3, 11], [1, -3, -7, 9], [3, 5, 5, -9]]]
[141, [[0, 2, -4, 11], [0, 4, -5, 10], [-1, -2, -6, 10], [-2, 3, 8, -8], [3, 4, 4, -10], [4, -5, -6, 8]]]
[142, [[-1, 2, 4, 11], [1, 4, 5, -10], [-2, 5, -7, 8], [3, 4, 6, -9]]]
[143, [[1, 5, -6, 9], [-2, 3, -3, 11], [2, -3, -7, 9], [3, 3, 5, -10], [3, 6, 7, -7]]]
[144, [[0, 4, 8, -8], [2, 2, 6, -10], [6, 6, -6, -6]]]
[145, [[0, 0, -8, 9], [0, -3, -6, 10], [2, 4, 5, -10], [-3, 6, 6, -8], [4, 4, -7, 8]]]
[146, [[0, 0, 5, 11], [0, 1, 8, -9], [0, -3, -4, 11], [1, 3, 6, -10], [2, 5, 6, -9], [3, -3, 8, 8], [5, -6, -6, 7]]]
[147, [[-1, -1, -1, 12], [1, 1, 8, -9], [-1, 3, -4, 11], [-1, 4, 7, -9], [3, 5, -7, 8]]]
[148, [[1, -1, 5, 11], [3, 3, 7, -9], [5, -5, 7, -7]]]
[149, [[0, -1, -2, 12], [0, 2, 8, -9], [0, -6, 7, 8], [2, 3, 6, -10]]]
[150, [[0, 1, -7, 10], [0, -2, -5, 11], [0, 5, 5, -10], [1, 1, 2, 12], [1, 2, -8, 9], [-1, 6, 7, -8], [-2, 3, 4, 11], [2, 4, 7, -9], [3, -4, -5, 10], [-4, 6, 7, 7], [-5, -5, 6, 8]]]
[151, [[-1, -1, -7, 10], [1, 2, -5, 11], [1, 5, 5, -10], [2, 7, 7, -7], [3, -5, -6, 9]]]
[152, [[0, 2, 2, 12], [0, 4, 6, -10], [4, -6, -6, 8]]]
[153, [[0, 0, -3, 12], [0, -2, -7, 10], [0, 6, -6, 9], [1, -2, -2, 12], [1, 4, 6, -10], [2, -2, -8, 9], [2, 6, -7, 8], [-3, 4, 8, -8]]]
[154, [[0, 1, 3, 12], [0, 3, -8, 9], [1, 2, 7, -10], [1, -4, -4, 11], [-1, 5, 8, -8], [1, 6, 6, -9], [2, -2, 5, 11], [3, -3, 6, 10], [4, -5, -7, 8]]]
[155, [[0, 3, -5, 11], [1, -1, -3, 12], [-1, 3, 8, -9], [-3, -3, 4, 11], [3, 4, -7, 9]]]
[156, [[1, -3, -5, 11], [1, 5, 7, -9], [-3, 7, 7, -7], [5, -5, -5, 9]]]
[157, [[2, 2, 7, -10], [-2, 4, -4, 11], [-2, -5, 8, 8], [-2, 6, 6, -9], [6, 6, 6, 7]]]
[158, [[0, -1, 6, 11], [0, 3, 7, -10], [-1, 2, 3, 12], [2, 3, 8, -9], [-3, 6, -7, 8], [-4, 5, 6, 9]]]
[159, [[1, 3, 7, -10], [-2, -3, -5, 11], [2, 5, -7, 9], [5, 6, 7, 7]]]
[160, [[0, 0, 4, 12], [4, -4, 8, 8]]]
[161, [[0, 1, -4, 12], [0, 5, 6, -10], [2, -2, -3, 12], [-3, -4, 6, 10], [5, 6, 6, 8]]]
[162, [[0, 0, 9, -9], [1, -1, 4, 12], [1, -2, 6, 11], [1, 4, 8, -9], [1, -5, -6, 10], [2, -3, 7, 10], [3, 4, 4, -11], [3, -6, -6, 9], [4, -4, 7, 9]]]
[163, [[0, 1, 9, -9], [-1, 4, -5, 11], [1, 7, -7, 8], [3, -3, -8, 9], [4, 7, 7, 7], [5, 5, 7, 8]]]
[164, [[1, -1, 9, -9], [3, 3, 5, -11], [3, -5, -7, 9]]]
[165, [[0, -1, -8, 10], [0, 4, 7, -10], [-1, 2, -4, 12], [-1, -6, 8, 8], [2, 2, -6, 11], [-2, 4, 8, -9], [2, -5, -6, 10], [4, 6, 7, 8]]]
[166, [[0, -2, 9, 9], [0, 6, 7, -9], [1, 1, 8, -10], [1, -4, -7, 10], [-2, 3, 3, 12], [2, 4, 5, -11], [-2, 7, 7, -8], [4, 5, 5, -10]]]
[167, [[-1, 2, 9, -9], [1, 3, -6, 11], [1, 6, -7, 9], [3, 3, -7, 10], [5, 5, 6, 9]]]
[168, [[0, 2, 8, -10], [2, -2, 4, 12], [-2, 6, 8, -8], [4, 4, 6, -10]]]
[169, [[1, 2, 8, -10], [2, 4, -7, 10], [4, 4, 4, -11], [4, 5, 8, 8], [4, 6, 6, 9]]]
[170, [[0, 0, -7, 11], [0, -1, 5, 12], [0, 5, 8, -9], [-1, -3, -4, 12], [2, 2, 9, -9], [2, 3, 6, -11], [3, -4, 8, 9], [3, 5, 6, -10], [6, -6, 7, -7]]]
[171, [[0, -5, -5, 11], [1, 1, -5, 12], [3, -3, -3, 12], [3, 4, 5, -11], [3, 7, 7, 8], [4, 5, 7, 9]]]
[172, [[1, 1, 1, 13], [1, -1, -7, 11], [1, 3, 9, -9], [1, 5, 5, -11], [-5, 7, 7, 7]]]
[173, [[0, 2, -5, 12], [0, 3, 8, -10], [0, 4, -6, 11], [-1, 6, 6, -10], [-2, 3, -4, 12], [3, 6, 8, 8]]]
[174, [[0, 1, 2, 13], [0, -2, 7, 11], [1, -2, 5, 12], [1, -3, 8, 10], [1, 4, 6, -11], [-2, 5, -8, 9], [3, 4, 7, -10], [5, -6, -7, 8]]]
[175, [[-1, -1, -2, 13], [-1, -2, -7, 11], [1, 5, -7, 10], [-2, 3, 9, -9], [2, 5, 5, -11], [3, 3, 6, -11], [3, 6, 7, 9], [5, 5, 5, 10]]]
[176, [[0, -4, -4, 12], [2, 6, 6, -10]]]
[177, [[0, -2, -2, 13], [0, -7, 8, 8], [2, -3, -8, 10], [2, 4, 6, -11], [4, 4, 8, 9], [4, 5, 6, 10]]]
[178, [[0, 0, 3, 13], [0, -3, -5, 12], [0, 4, 9, -9], [-1, 2, 2, 13], [2, 2, 7, -11], [2, 5, 7, -10], [3, -3, 4, 12], [4, -4, 5, 11], [-4, 7, -7, 8], [5, -5, 8, 8], [-5, 6, 6, 9]]]
[179, [[0, -1, -3, 13], [0, -3, -7, 11], [0, 7, -7, 9], [-1, 3, -5, 12], [3, 5, 8, 9]]]
[180, [[1, -1, 3, 13], [1, 3, 7, -11], [-1, 7, 7, -9], [3, -3, 9, -9], [3, -5, -5, 11], [5, -5, 7, 9]]]
[181, [[0, 0, -9, 10], [-1, 4, 8, -10], [2, 7, 8, 8], [3, 6, 6, 10], [4, 4, 7, 10]]]
[182, [[0, 1, 9, -10], [0, 5, 6, -11], [-1, -1, 6, 12], [-1, 6, 8, -9], [2, -3, 5, 12], [2, -4, 9, 9], [3, 3, 8, -10], [3, -4, 6, 11], [4, -6, -7, 9]]]
[183, [[1, 1, 9, -10], [1, -2, -3, 13], [1, 5, 6, -11], [2, 3, 7, -11], [2, 7, 7, 9], [3, 5, 7, 10], [-6, 7, 7, -7]]]
[184, [[0, -2, 6, 12], [2, 4, 8, -10]]]
[185, [[0, 0, -4, 13], [0, 2, 9, -10], [0, 6, -7, 10], [1, 2, -6, 12], [2, 6, 8, 9], [-3, 4, -4, 12], [6, -6, -7, 8]]]
[186, [[0, -1, 4, 13], [0, 1, -8, 11], [0, 4, 7, -11], [1, 2, -9, 10], [1, -4, -5, 12], [1, 6, 7, -10], [2, -2, 3, 13], [-3, 7, 8, -8], [4, -5, 8, 9], [5, -5, 6, 10]]]
[187, [[1, -1, -4, 13], [-1, -1, -8, 11], [1, 4, 7, -11], [-3, -3, -5, 12], [3, 4, 9, 9], [4, 5, 5, 11], [-5, 7, 7, -8]]]
[188, [[-1, 5, 9, -9], [3, -3, -7, 11]]]
[189, [[0, -2, -8, 11], [0, 3, -6, 12], [2, -2, -9, 10], [-2, 4, -5, 12], [2, 6, 7, 10], [3, 4, 8, 10], [4, 4, 6, 11], [-5, 6, 8, -8], [6, 6, 6, -9]]]
[190, [[0, 3, -9, 10], [1, -2, 4, 13], [1, 2, 8, -11], [1, -3, 6, 12], [1, 5, 8, -10], [2, -4, 7, 11], [-3, 6, -8, 9], [4, -5, 7, 10]]]
[191, [[-1, 3, 9, -10], [2, -3, -3, 13], [2, 5, 9, 9], [3, 5, 6, 11], [5, 6, 7, -9]]]
[192, [[4, 4, 4, -12]]]
[193, [[0, 6, 6, -11], [1, 8, 8, 8], [2, -2, -4, 13], [2, 2, 8, -11], [-2, -3, -6, 12], [2, 5, 8, 10]]]
[194, [[0, -1, -7, 12], [0, 3, 8, -11], [1, -6, -6, 11], [2, 3, 9, -10], [3, 4, 5, -12], [3, -6, -7, 10], [4, -4, 9, -9]]]
[195, [[0, 1, -5, 13], [0, 5, 7, -11], [1, 3, 8, -11], [-1, -5, -5, 12], [1, 7, 8, 9], [3, 4, 7, 11], [4, 7, 7, -9], [5, 5, 8, -9]]]
[196, [[-1, -1, 5, 13], [1, -5, -7, 11], [3, 3, -3, 13], [3, -5, 9, 9], [5, 5, 5, -11], [7, 7, -7, -7]]]
[197, [[-1, 4, -6, 12], [2, 6, 6, 11], [4, 6, 8, -9]]]
[198, [[0, 1, 1, 14], [0, -2, 5, 13], [0, 7, 7, -10], [1, -2, -7, 12], [1, 4, 9, -10], [2, -3, 4, 13], [-2, 3, -8, 11], [2, 5, 5, -12], [-2, 7, 8, -9], [3, 3, 6, -12], [3, -5, 8, 10], [4, 5, 6, -11], [6, -7, -7, 8]]]
[199, [[-1, 2, -5, 13], [1, 6, 9, 9], [1, 7, 7, 10], [2, 5, 7, 11], [3, 3, 9, 10]]]
[200, [[0, 0, 2, 14], [0, 0, 10, -10], [0, 6, 8, -10], [2, 4, 6, -12], [6, -6, 8, 8]]]
160515(3)
Ruby
e とπ(2)
それぞれの分子について、
オンライン整数列大辞典の
A053557(http://oeis.org/A053557/list)、
A086116(http://oeis.org/A086116/list)
と比較し、答え合わせしてみる。
(注意:bn の分子がA086116 にたまたま一致しているだけかもしれません。)
出力結果
true
true
e とπ(2)
それぞれの分子について、
オンライン整数列大辞典の
A053557(http://oeis.org/A053557/list)、
A086116(http://oeis.org/A086116/list)
と比較し、答え合わせしてみる。
(注意:bn の分子がA086116 にたまたま一致しているだけかもしれません。)
def A053557(n)
ary = [1, 0, 1]
return ary[0..n] if n < 3
a, b = 0, 1
m = 2
while m < n
a, b = b, b + a / (m - 1r)
ary << b.numerator
m += 1
end
ary
end
def f(n)
ary = [0, 1]
return ary[0..n] if n < 2
a, b = 0, 1
m = 2
while m < n
a, b = b, a + b / (m - 1r)
ary << b.numerator
m += 1
end
ary
end
def A086116(n)
f(n + 1)[1..-1]
end
ary = A053557(23)
# OEIS A053557のデータ
ary0 =
[1,0,1,1,3,11,53,103,2119,16687,16481,1468457,
16019531,63633137,2467007773,34361893981,
15549624751,8178130767479,138547156531409,
92079694567171,4282366656425369,72289643288657479,
6563440628747948887,39299278806015611311]
# 一致の確認
p ary == ary0
ary = A086116(33)
# OEIS A086116のデータ
ary0 =
[1,1,3,3,15,15,35,35,315,315,693,693,3003,3003,
6435,6435,109395,109395,230945,230945,969969,
969969,2028117,2028117,16900975,16900975,35102025,
35102025,145422675,145422675,300540195,300540195,
9917826435]
# 一致の確認
p ary == ary0
出力結果
true
true
160515(2)
Ruby
e とπ(1)
http://www004.upp.so-net.ne.jp/s_honma/mathbun/mathbun324.htm
に載っている漸化式が面白い。
a1 = 0,
a2 = 1,
a3 = a2 + a1 / 1 = 1 + 0 = 1,
a4 = a3 + a2 / 2 = 1 + 1 / 2 = 3 / 2,
a5 = a4 + a3 / 3 = 3 / 2 + 1 / 3 = 11 / 6,
a6 = a5 + a4 / 4 = 11 / 6 + 3 / 8 = 53 / 24,
…
に対し、n / an → e となる。
一方、
b1 = 0,
b2 = 1,
b3 = b2 / 1 + b1 = 1 + 0 = 1,
b4 = b3 / 2 + b2 = 1 / 2 + 1 = 3 /2,
b5 = b4 / 3 + b3 = 1 / 2 + 1 = 3 /2,
b6 = b5 / 4 + b4 = 3 / 8 + 3 / 2 = 15 / 8,
…
に対し、2n / (bn)^2 → π となる。
出力結果
[0, 1, (1/1), (3/2), (11/6), (53/24), (103/40), (2119/720), (16687/5040), (16481/4480), (1468457/362880), (16019531/3628800), (63633137/13305600), (2467007773/479001600), (34361893981/6227020800), (15549624751/2641766400), (8178130767479/1307674368000), (138547156531409/20922789888000), (92079694567171/13173608448000), (4282366656425369/582033973248000), (72289643288657479/9357315416064000), (6563440628747948887/810967336058880000), (39299278806015611311/4644631106519040000), (9923922230666898717143/1124000727777607680000), (79253545592131482810517/8617338912961658880000), (5934505493938805432851513/620448401733239439360000), (14006262966463963871240459/1410110003939180544000000), (461572649528573755888451011/44810162347400626176000000), (116167945043852116348068366947/10888869450418352160768000000), (3364864615063302680426807870189/304888344611713860501504000000), (277778998066291010992075323719/24357471057134165164032000000), (3122594362778744887436077703535391/265252859812191058636308480000000), (99825438535083000620222109084897031/8222838654177922817725562880000000), (7671828574286240352814978786774597/613358594251033869853655040000000), (111804491159292960694648762175084674721/8683317618811886495518194401280000000), (3909962776542130968292859568637246910243/295232799039604140847618609643520000000), (15627783319821171617096460312917391199891/1148127551820682769962961259724800000000), (42977276800008547006855398564359821410109/3074325014792572045190078083891200000000), (197472670029260324553630872514024155201822677/13763753091226345046315979581580902400000000), (2565456909781843532662554924968518939374106573/174340872488867037253335741366691430400000000), (307662419905587585654556899376849633804439730767/20397882081197443358640281739902897356800000000), (1146059568606179919954890445572300188007669063611/74174116658899794031419206326919626752000000000), (176393120745870215775279288976060456714545445639747/11150842204387935702723354017813583888384000000000), (22742406079421034331584846001936724930824184898296683/1405006117752879898543142606244511569936384000000000), (8265694170488298540874657590861675946871675014688971/499299694738626740804587868334826425679872000000000), (15009836244609544847472414211488435740130209452396009/886977502431914837518727331002541171277824000000000), (159100624684072766714306447665087342217985038121199371953/9201709297344630350920243191973670389567979520000000000), (97166475126204780761009622846354618532447713494274612181679/5502622159812088949850305428800254892961651752960000000000), (141271712257354551826139622105526948535496896576587393847479/7837067924580853958877707731927635756642352496640000000000), (5569297964550761824106649114364228135396393334427935088462089/302778429086245674899080220667643293622475276943360000000000), (11412494002998130114722863232172889010491581293043036024574743537/608281864034267560872252163321295376887552831379210240000000000), (193937806586896328746924473226467394949530139620339174273819171217/10138031067237792681204202722021589614792547189653504000000000000), (2749373555267731345819598869568923261618426402414913224102097306641/141010795753398389111294819679027564642114520001544192000000000000), (1602314158020937468107089997797073617073018013543242257850293992594853/80658175170943878571660636856403766975289505440883277824000000000000), (9610588005413647571053842270737591756723966068885907781139109029658429/474987031562225062699779305932155516632260420929645969408000000000000), (432333492818740218667440283041974045042974314926940274663606597274683973/20985790667203761861099340243911598280298051324709812830208000000000000), (266232508925968865013333538583972766844767308040277417353115598339597800159/12696403353658275925965100847566516959580321051449436762275840000000000000), (5056860754336531424346826510647623080185989570262111412648651832789553537523/236999529268287817284681882487908316578832659627056152895815680000000000000), (535381746495070681682321370347806464793129145322627259242053522163135198859/24666414792986741786780646321017846704187696163254170508328960000000000000), (362820918457991695201387692302409879739218552383841000655770404226719016048853/16437491827152997005800523849755767019782253973294705765179719680000000000000), (1037379585726859065984781030873785341538594458412280321524982382933947381348080769/46227706181896611912646339906796468781967625590895810846940431646720000000000000), (189789445519864707809674693517236793632306789440672924397029563828571356981058711181/8320987112741390144276341183223364380754172606361245952449277696409600000000000000), (317942824382231940763984240273208804676963815091763752597116222228944954175330700553/13718384158843913481104238166935816952054176459136108191875836202188800000000000000), (7484222174843957770595656600922145882227532383599869665111145628148914925798517257077/317878517781696338642960831868189536242548290881396284769324931796172800000000000000), (47408454543634604687317690067138164865382074468332893149755999896557982117083560759457831/1982608315404440064116146708361898137544773690227268628106279599612729753600000000000000), (3080820184497116464603537274516793975251905885449817548685682208662475637885553240737690433/126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000), (6160225851003187421188431969936013664932070767279134722004658410801231130850130561713793313/249928805820680929294641524448045340975341168222589014937034034375422902272000000000000000), (13617225215477254773547634753364229370613424013688193565190715362288142319454145324060591713859/544344939077443064003729240247842752644293064388798874532860126869671081148416000000000000000), (925771061340461012031039933305924005593321459048242924292304075292030616806419321075472286664267/36471110918188685288249859096605464427167635314049524593701628500267962436943872000000000000000), (452941746528995211971194375838852735802673465419841332062017411695967287079715897658469327219849/17588904556289578720574400131696252347853895045073529591288728638427102451859456000000000000000), (406329334922885978735078254363727372636777818571356076225749461409993074358308407468398200001371007/15556586584376482852042576261933894462933685899410942672149821902114298159467331584000000000000000), (317280258142602798043278005942606275196943130445013815013458452684084732991896029718985862085577586311/11978571669969891796072783721689098736458938142546425857555362864628009582789845319680000000000000000), (65070575259303193346720081703091497481234419321640812093018168734631654443534232432474822854920411121/2423015921845761588379394997834547037859215407751556227596668841562930713327860449280000000000000000), (1666990476281235100919382643222453369884739207358102584080710710402181187139421740143551719397624638477993/61234458376886086861524070385274672740778091784697328983823014963978384987221689274204160000000000000000), (11212251667862115697215749350912693120539247125657999567373330638147348893843162195682979930837831567158491/406374132864789485535568830738641010006981881843900455983552735670038373097016665183354880000000000000000), (3082821054136097446633578301532723765373511040807584378826594340437100408749837271438808313072673831425301721/110262848050646213741984342740417927381894417273644990390203975611803745233657188486416957440000000000000000), (702761510038261687670088737816505779409158931341992096883825617737799533968301720101017816105053606966359898899/24809140811395398091946477116594033660926243886570122837795894512655842677572867409443815424000000000000000000), (119963435698644146759244565835696900404224210124552341127287651163350581316096771870844979810255932908013403999/4180697786399224512168364214769726293193779457603834447167379119649321604202966570105831424000000000000000000), (1406460035423241057590404260616766899857530074592440183230163002965916133981894509162170322631580618742008277663199/48394364009428623211356928028769428327913459741402786282260524896020663783052140026688402620416000000000000000000), (333277618520545222760662883022099700826999531599626332026185460955974050989127407740706689109660622567726518453861839/11324281178206297831457521158732046228731749579488251990048962825668835325234200766245086213177344000000000000000000), (26658043511412111005568522355730199819899625033825111232944509558215974403492828526659776295158979047636024894828273847/894618213078297528685144171539831652069808216779571907213868063227837990693501860533361810841010176000000000000000000), (21807802149253454071147213699163251130881848138407872513794236525987877801086538862063615475276580939330630167112292859/722923808548119215099106401244308405712976336791573258354640859174010497530102513562312574416977920000000000000000000), (4784038078804768029107432120055365589300905681745911853695987661258218109167361659919484178374476239900086629774587522813/156679081641820756375127952204813759605739384992746647533672028370713248099834920439356338763506647040000000000000000000), (14689648296528529648508478558901569308757489378638989293801742546959330535300688231330603129684403814409355158046172020650963/475364333701284174842138206989404946643813294067993328617160934076743994734899148613007131808479167119360000000000000000000), (411251860047653875675505223147026077274936855421817735983219419320627289391056966158878591586997892502611113650856125419414857/13151746565735528837299157060040203523812167802547815425074785842789917187665543111626530646701256956968960000000000000000000), (733249717067277235182192447226848963118258455837238500553544323777592317209624563603061854123687233757020819007927104079766251/23176504437519952916079633420490428587417246756937409000831091135545868050991027021887312748032984287805440000000000000000000), (9016285779684763570309776512275399718175715618267932043696102549185432692609532926067254241953341795227246055681369693695251324869/281710411438055027694947944226061159480056634330574206405101912752560026159795933451040286452340924018275123200000000000000000000), (261437742454614140613426776417242241636604658233914596577364383495154615393367606070793027214953604238619916281213049202627057573213/8075698461224244127255174401147086571761623517476460583612921498906720749914150092263154878300439821857220198400000000000000000000), (6273695577973380033377366311359628131174266122020250169313633537405936529930305910556251269810079827333576482744109421413041240049757/191614299852684337928509138063580872293616703460123292029361137383150374157053924916425765748764981227703133798400000000000000000000), (198102340976093102032561128323903879227220755545633995922654495751651029535167905374288006750943876244038123659538533089345470399831399/5983311040561239971445059536953105947749063514496753118852309064093211683355748365132262620800145220271504306995200000000000000000000), (36528342657976012980378441644196372715901827890575702089662195190892599447980751341733033370019850078006483258111118429072111623603873/1091146484295621725244029298860044901172560396357759392882115189889164586845033362376886282688056095097434092339200000000000000000000), (50283921005279759902720926080199873856486989938637185917055545347650077524852599085344776177578582219271708852253346777002382060648404345371/1485715964481761497309522733620825737885569961284688766942216863704985393094065876545992131370884059645617234469978112000000000000000000000), (420506742556998624561983396656849340363092288390006427288578142566366211554177417054617431611509428183494537565830112424675058675165460449481/12290922978894572386833324432681376558871533316082425253794703145195788251959999524153207632250040857068288030615273472000000000000000000000), (143376220093054355402624933896676573656129903978367496111497711634599587715863044192013071807669064101216732507391709443492792048928816923434511/4146138018213769085158441441957851025859330571958471452280079860979379236994506506147682041279013782451035828994218917888000000000000000000000), (40427518229429847765389083754589495582507692605815217919523902626330447578818616875630919875130516425561164841578907008508260141030407367613103341/1156772507081641574759205162306240436214753229576413535186142281213246807121467315215203289516844845303838996289387078090752000000000000000000000), (3840188678972367855103906229488585348805783348156595015850354708421115357381675775638878115296608212886988963477979545734510942238509432477269942623/108736615665674308027365285256786601004186803580182872307497374434045199869417927630229109214583415458560865651202385340530688000000000000000000000), (11170245794422465209842959565889303658221367914540095666370271034753970334050549959757658406710304508129293970470196184956918665633795587208978068583/313029651158759371593930366648325063496901404245980996036734865794978605684687973480962587132891650562523704147400806283345920000000000000000000000), (35752156601232744731017366996538729597381842971337899597566802335400583977223401471197955253411422461977867249979989570788296872240522816363383165820129/991677934870949689209571401541893801158183648651267795444376054838492222809091499987689476037000748982075094738965754305639874560000000000000000000000), (269488194538177431437959007274538006533483389367156868002695449628612094139149391152208763185643555653354363580500659221569870380004505969809708431217189/7399443052498624604102186611504899900949524147628690473700344409179518893267836576831221475045313280866252629975359859049774448640000000000000000000000), (31558460190368334142403172251016987632596585387385351360123576545034640511335607814234249336435599042786906208463545257680087329214038704042662363131791/857847888696264241116224018842227907344589477120661722039697768431586774958888324586675417163320513224461356864920234819311370240000000000000000000000)]
2.718281828459045
[0, 1, (1/1), (3/2), (3/2), (15/8), (15/8), (35/16), (35/16), (315/128), (315/128), (693/256), (693/256), (3003/1024), (3003/1024), (6435/2048), (6435/2048), (109395/32768), (109395/32768), (230945/65536), (230945/65536), (969969/262144), (969969/262144), (2028117/524288), (2028117/524288), (16900975/4194304), (16900975/4194304), (35102025/8388608), (35102025/8388608), (145422675/33554432), (145422675/33554432), (300540195/67108864), (300540195/67108864), (9917826435/2147483648), (9917826435/2147483648), (20419054425/4294967296), (20419054425/4294967296), (83945001525/17179869184), (83945001525/17179869184), (172308161025/34359738368), (172308161025/34359738368), (1412926920405/274877906944), (1412926920405/274877906944), (2893136075115/549755813888), (2893136075115/549755813888), (11835556670925/2199023255552), (11835556670925/2199023255552), (24185702762325/4398046511104), (24185702762325/4398046511104), (395033145117975/70368744177664), (395033145117975/70368744177664), (805867616040669/140737488355328), (805867616040669/140737488355328), (3285460280781189/562949953421312), (3285460280781189/562949953421312), (6692604275665385/1125899906842624), (6692604275665385/1125899906842624), (54496920530418135/9007199254740992), (54496920530418135/9007199254740992), (110873045217057585/18014398509481984), (110873045217057585/18014398509481984), (450883717216034179/72057594037927936), (450883717216034179/72057594037927936), (916312070471295267/144115188075855872), (916312070471295267/144115188075855872), (59560284580634192355/9223372036854775808), (59560284580634192355/9223372036854775808), (120925426269772451145/18446744073709551616), (120925426269772451145/18446744073709551616), (490814965447899948765/73786976294838206464), (490814965447899948765/73786976294838206464), (995653215622882753209/147573952589676412928), (995653215622882753209/147573952589676412928), (8075853860052271220473/1180591620717411303424), (8075853860052271220473/1180591620717411303424), (16369974040646495717175/2361183241434822606848), (16369974040646495717175/2361183241434822606848), (66341473743672640538025/9444732965739290427392), (66341473743672640538025/9444732965739290427392), (134384010916670220577025/18889465931478580854784), (134384010916670220577025/18889465931478580854784), (2177020976850057573347805/302231454903657293676544), (2177020976850057573347805/302231454903657293676544), (4407140026306214111899215/604462909807314587353088), (4407140026306214111899215/604462909807314587353088), (17838423916001342833877775/2417851639229258349412352), (17838423916001342833877775/2417851639229258349412352), (36091694899816670384822475/4835703278458516698824704), (36091694899816670384822475/4835703278458516698824704), (292014622371243969477200025/38685626227668133590597632), (292014622371243969477200025/38685626227668133590597632), (590518458572960027165004495/77371252455336267181195264), (590518458572960027165004495/77371252455336267181195264), (2387748549881968805493279045/309485009821345068724781056), (2387748549881968805493279045/309485009821345068724781056), (4826300260399724181316202325/618970019642690137449562112), (4826300260399724181316202325/618970019642690137449562112), (156050375086257748529223875175/19807040628566084398385987584), (156050375086257748529223875175/19807040628566084398385987584), (315285451704888104171289053925/39614081257132168796771975168), (315285451704888104171289053925/39614081257132168796771975168), (1273753224887747940852007777857/158456325028528675187087900672), (1273753224887747940852007777857/158456325028528675187087900672), (2572482003204667409956015708221/316912650057057350374175801344), (2572482003204667409956015708221/316912650057057350374175801344), (20777739256653082926567819181785/2535301200456458802993406410752), (20777739256653082926567819181785/2535301200456458802993406410752), (41947511329469431568731257593415/5070602400912917605986812821504), (41947511329469431568731257593415/5070602400912917605986812821504), (169343656848598816333026188062305/20282409603651670423947251286016), (169343656848598816333026188062305/20282409603651670423947251286016), (341766289276263065690289215907561/40564819207303340847894502572032), (341766289276263065690289215907561/40564819207303340847894502572032), (5517084384031103774714668771079199/649037107316853453566312041152512), (5517084384031103774714668771079199/649037107316853453566312041152512), (11130959722168016387582226467966805/1298074214633706907132624082305024), (11130959722168016387582226467966805/1298074214633706907132624082305024), (44907665085988204046452430922486765/5192296858534827628530496329220096), (44907665085988204046452430922486765/5192296858534827628530496329220096), (90576477037840614941149818301286865/10384593717069655257060992658440192), (90576477037840614941149818301286865/10384593717069655257060992658440192), (730650248105247627191941867630380711/83076749736557242056487941267521536), (730650248105247627191941867630380711/83076749736557242056487941267521536), (1473278369130253412206702454402243073/166153499473114484112975882535043072), (1473278369130253412206702454402243073/166153499473114484112975882535043072), (5940638585202634726639929251621947875/664613997892457936451903530140172288), (5940638585202634726639929251621947875/664613997892457936451903530140172288), (11975573020964041433067793888190275875/1329227995784915872903807060280344576), (11975573020964041433067793888190275875/1329227995784915872903807060280344576), (1544848919704361344865745411576545587875/170141183460469231731687303715884105728), (1544848919704361344865745411576545587875/170141183460469231731687303715884105728), (3113464745865712864267886906408114954025/340282366920938463463374607431768211456), (3113464745865712864267886906408114954025/340282366920938463463374607431768211456), (12548206400004236695382695713705432996525/1361129467683753853853498429727072845824), (12548206400004236695382695713705432996525/1361129467683753853853498429727072845824), (25283699462695103789203939124630350067625/2722258935367507707706996859454145691648), (25283699462695103789203939124630350067625/2722258935367507707706996859454145691648), (203756872140542895242408215298491644662625/21778071482940061661655974875633165533184), (203756872140542895242408215298491644662625/21778071482940061661655974875633165533184), (410466742428050180270938288789715052291375/43556142965880123323311949751266331066368), (410466742428050180270938288789715052291375/43556142965880123323311949751266331066368), (1653594590924430726234351391981423496373825/174224571863520493293247799005065324265472), (1653594590924430726234351391981423496373825/174224571863520493293247799005065324265472), (3330479246509768927486088014835824788471225/348449143727040986586495598010130648530944), (3330479246509768927486088014835824788471225/348449143727040986586495598010130648530944), (53657721193768499387275862461243843814258625/5575186299632655785383929568162090376495104), (53657721193768499387275862461243843814258625/5575186299632655785383929568162090376495104), (108050479664163964519582901120586918365698875/11150372599265311570767859136324180752990208), (108050479664163964519582901120586918365698875/11150372599265311570767859136324180752990208), (435122201890822451713996007215336509094300875/44601490397061246283071436545296723011960832), (435122201890822451713996007215336509094300875/44601490397061246283071436545296723011960832), (876046033140189202784178627860210838309859095/89202980794122492566142873090593446023921664), (876046033140189202784178627860210838309859095/89202980794122492566142873090593446023921664), (7054475951076260422419964740137487276916233765/713623846352979940529142984724747568191373312), (7054475951076260422419964740137487276916233765/713623846352979940529142984724747568191373312), (14200568472945719032144084866510526336649561475/1427247692705959881058285969449495136382746624), (14200568472945719032144084866510526336649561475/1427247692705959881058285969449495136382746624), (57166391032114817642221059590824426534717465425/5708990770823839524233143877797980545530986496), (57166391032114817642221059590824426534717465425/5708990770823839524233143877797980545530986496), (115056407267167797533077828796722579987595911425/11417981541647679048466287755595961091061972992), (115056407267167797533077828796722579987595911425/11417981541647679048466287755595961091061972992), (3704816314002803080565106087254467075600588347885/365375409332725729550921208179070754913983135744), (3704816314002803080565106087254467075600588347885/365375409332725729550921208179070754913983135744), (7455371101017986446075460397808372016332048156855/730750818665451459101842416358141509827966271488), (7455371101017986446075460397808372016332048156855/730750818665451459101842416358141509827966271488), (30003322723608969843962218674106862992555803558075/2923003274661805836407369665432566039311865085952), (30003322723608969843962218674106862992555803558075/2923003274661805836407369665432566039311865085952), (60368131263165035710140849621395736382612279448175/5846006549323611672814739330865132078623730171904), (60368131263165035710140849621395736382612279448175/5846006549323611672814739330865132078623730171904), (485819723022613858810181123143613307079117867940075/46768052394588893382517914646921056628989841375232), (485819723022613858810181123143613307079117867940075/46768052394588893382517914646921056628989841375232), (977354972198434939488717318324210300123872416679445/93536104789177786765035829293842113257979682750464), (977354972198434939488717318324210300123872416679445/93536104789177786765035829293842113257979682750464), (3932149074193703361198792931862520509800696001989395/374144419156711147060143317175368453031918731001856), (3932149074193703361198792931862520509800696001989395/374144419156711147060143317175368453031918731001856), (7909495264182736646089526012367138956495652877564875/748288838313422294120286634350736906063837462003712), (7909495264182736646089526012367138956495652877564875/748288838313422294120286634350736906063837462003712), (127270969250940398759804191289907599572702778120816625/11972621413014756705924586149611790497021399392059392), (127270969250940398759804191289907599572702778120816625/11972621413014756705924586149611790497021399392059392), (255971949392340802000055620684196183410267385209282875/23945242826029513411849172299223580994042798784118784), (255971949392340802000055620684196183410267385209282875/23945242826029513411849172299223580994042798784118784), (1029576063111415225822445940974211315494631038286226675/95780971304118053647396689196894323976171195136475136), (1029576063111415225822445940974211315494631038286226675/95780971304118053647396689196894323976171195136475136), (2070466148894384465115468210970117260829862417652521775/191561942608236107294793378393788647952342390272950272), (2070466148894384465115468210970117260829862417652521775/191561942608236107294793378393788647952342390272950272), (16653749458498309828102679088237899706674980315900718625/1532495540865888858358347027150309183618739122183602176), (16653749458498309828102679088237899706674980315900718625/1532495540865888858358347027150309183618739122183602176), (33486571491819182127475279456994486506970121710467036375/3064991081731777716716694054300618367237478244367204352), (33486571491819182127475279456994486506970121710467036375/3064991081731777716716694054300618367237478244367204352), (134658766211783519618996336539828892549305383048473827125/12259964326927110866866776217202473468949912977468817408), (134658766211783519618996336539828892549305383048473827125/12259964326927110866866776217202473468949912977468817408), (270734993120533181549771581885340194493866612234300010325/24519928653854221733733552434404946937899825954937634816), (270734993120533181549771581885340194493866612234300010325/24519928653854221733733552434404946937899825954937634816), (17417284557420968013035305101290219179105418720406633997575/1569275433846670190958947355801916604025588861116008628224), (17417284557420968013035305101290219179105418720406633997575/1569275433846670190958947355801916604025588861116008628224), (35014128749454523325174066956201987009541821138961789995125/3138550867693340381917894711603833208051177722232017256448), (35014128749454523325174066956201987009541821138961789995125/3138550867693340381917894711603833208051177722232017256448), (140771089053929410103250840619832478385300791109703523041625/12554203470773361527671578846415332832204710888928069025792), (140771089053929410103250840619832478385300791109703523041625/12554203470773361527671578846415332832204710888928069025792), (282964108300322753641888053367138012107826842735666677629125/25108406941546723055343157692830665664409421777856138051584)]
3.149456428081303
e とπ(1)
http://www004.upp.so-net.ne.jp/s_honma/mathbun/mathbun324.htm
に載っている漸化式が面白い。
a1 = 0,
a2 = 1,
a3 = a2 + a1 / 1 = 1 + 0 = 1,
a4 = a3 + a2 / 2 = 1 + 1 / 2 = 3 / 2,
a5 = a4 + a3 / 3 = 3 / 2 + 1 / 3 = 11 / 6,
a6 = a5 + a4 / 4 = 11 / 6 + 3 / 8 = 53 / 24,
…
に対し、n / an → e となる。
一方、
b1 = 0,
b2 = 1,
b3 = b2 / 1 + b1 = 1 + 0 = 1,
b4 = b3 / 2 + b2 = 1 / 2 + 1 = 3 /2,
b5 = b4 / 3 + b3 = 1 / 2 + 1 = 3 /2,
b6 = b5 / 4 + b4 = 3 / 8 + 3 / 2 = 15 / 8,
…
に対し、2n / (bn)^2 → π となる。
def a(n)
ary = [0, 1]
a, b = 0, 1
m = 2
while m < n
a, b = b, b + a / (m - 1r)
ary << b
m += 1
end
ary
end
def b(n)
ary = [0, 1]
a, b = 0, 1
m = 2
while m < n
a, b = b, a + b / (m - 1r)
ary << b
m += 1
end
ary
end
n0 = 100
p ary0 = a(n0)
p n0.to_f / ary0[-1]
n1 = 200
p ary1 = b(n1)
p (2 * n1).to_f / ary1[-1] ** 2
出力結果
[0, 1, (1/1), (3/2), (11/6), (53/24), (103/40), (2119/720), (16687/5040), (16481/4480), (1468457/362880), (16019531/3628800), (63633137/13305600), (2467007773/479001600), (34361893981/6227020800), (15549624751/2641766400), (8178130767479/1307674368000), (138547156531409/20922789888000), (92079694567171/13173608448000), (4282366656425369/582033973248000), (72289643288657479/9357315416064000), (6563440628747948887/810967336058880000), (39299278806015611311/4644631106519040000), (9923922230666898717143/1124000727777607680000), (79253545592131482810517/8617338912961658880000), (5934505493938805432851513/620448401733239439360000), (14006262966463963871240459/1410110003939180544000000), (461572649528573755888451011/44810162347400626176000000), (116167945043852116348068366947/10888869450418352160768000000), (3364864615063302680426807870189/304888344611713860501504000000), (277778998066291010992075323719/24357471057134165164032000000), (3122594362778744887436077703535391/265252859812191058636308480000000), (99825438535083000620222109084897031/8222838654177922817725562880000000), (7671828574286240352814978786774597/613358594251033869853655040000000), (111804491159292960694648762175084674721/8683317618811886495518194401280000000), (3909962776542130968292859568637246910243/295232799039604140847618609643520000000), (15627783319821171617096460312917391199891/1148127551820682769962961259724800000000), (42977276800008547006855398564359821410109/3074325014792572045190078083891200000000), (197472670029260324553630872514024155201822677/13763753091226345046315979581580902400000000), (2565456909781843532662554924968518939374106573/174340872488867037253335741366691430400000000), (307662419905587585654556899376849633804439730767/20397882081197443358640281739902897356800000000), (1146059568606179919954890445572300188007669063611/74174116658899794031419206326919626752000000000), (176393120745870215775279288976060456714545445639747/11150842204387935702723354017813583888384000000000), (22742406079421034331584846001936724930824184898296683/1405006117752879898543142606244511569936384000000000), (8265694170488298540874657590861675946871675014688971/499299694738626740804587868334826425679872000000000), (15009836244609544847472414211488435740130209452396009/886977502431914837518727331002541171277824000000000), (159100624684072766714306447665087342217985038121199371953/9201709297344630350920243191973670389567979520000000000), (97166475126204780761009622846354618532447713494274612181679/5502622159812088949850305428800254892961651752960000000000), (141271712257354551826139622105526948535496896576587393847479/7837067924580853958877707731927635756642352496640000000000), (5569297964550761824106649114364228135396393334427935088462089/302778429086245674899080220667643293622475276943360000000000), (11412494002998130114722863232172889010491581293043036024574743537/608281864034267560872252163321295376887552831379210240000000000), (193937806586896328746924473226467394949530139620339174273819171217/10138031067237792681204202722021589614792547189653504000000000000), (2749373555267731345819598869568923261618426402414913224102097306641/141010795753398389111294819679027564642114520001544192000000000000), (1602314158020937468107089997797073617073018013543242257850293992594853/80658175170943878571660636856403766975289505440883277824000000000000), (9610588005413647571053842270737591756723966068885907781139109029658429/474987031562225062699779305932155516632260420929645969408000000000000), (432333492818740218667440283041974045042974314926940274663606597274683973/20985790667203761861099340243911598280298051324709812830208000000000000), (266232508925968865013333538583972766844767308040277417353115598339597800159/12696403353658275925965100847566516959580321051449436762275840000000000000), (5056860754336531424346826510647623080185989570262111412648651832789553537523/236999529268287817284681882487908316578832659627056152895815680000000000000), (535381746495070681682321370347806464793129145322627259242053522163135198859/24666414792986741786780646321017846704187696163254170508328960000000000000), (362820918457991695201387692302409879739218552383841000655770404226719016048853/16437491827152997005800523849755767019782253973294705765179719680000000000000), (1037379585726859065984781030873785341538594458412280321524982382933947381348080769/46227706181896611912646339906796468781967625590895810846940431646720000000000000), (189789445519864707809674693517236793632306789440672924397029563828571356981058711181/8320987112741390144276341183223364380754172606361245952449277696409600000000000000), (317942824382231940763984240273208804676963815091763752597116222228944954175330700553/13718384158843913481104238166935816952054176459136108191875836202188800000000000000), (7484222174843957770595656600922145882227532383599869665111145628148914925798517257077/317878517781696338642960831868189536242548290881396284769324931796172800000000000000), (47408454543634604687317690067138164865382074468332893149755999896557982117083560759457831/1982608315404440064116146708361898137544773690227268628106279599612729753600000000000000), (3080820184497116464603537274516793975251905885449817548685682208662475637885553240737690433/126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000), (6160225851003187421188431969936013664932070767279134722004658410801231130850130561713793313/249928805820680929294641524448045340975341168222589014937034034375422902272000000000000000), (13617225215477254773547634753364229370613424013688193565190715362288142319454145324060591713859/544344939077443064003729240247842752644293064388798874532860126869671081148416000000000000000), (925771061340461012031039933305924005593321459048242924292304075292030616806419321075472286664267/36471110918188685288249859096605464427167635314049524593701628500267962436943872000000000000000), (452941746528995211971194375838852735802673465419841332062017411695967287079715897658469327219849/17588904556289578720574400131696252347853895045073529591288728638427102451859456000000000000000), (406329334922885978735078254363727372636777818571356076225749461409993074358308407468398200001371007/15556586584376482852042576261933894462933685899410942672149821902114298159467331584000000000000000), (317280258142602798043278005942606275196943130445013815013458452684084732991896029718985862085577586311/11978571669969891796072783721689098736458938142546425857555362864628009582789845319680000000000000000), (65070575259303193346720081703091497481234419321640812093018168734631654443534232432474822854920411121/2423015921845761588379394997834547037859215407751556227596668841562930713327860449280000000000000000), (1666990476281235100919382643222453369884739207358102584080710710402181187139421740143551719397624638477993/61234458376886086861524070385274672740778091784697328983823014963978384987221689274204160000000000000000), (11212251667862115697215749350912693120539247125657999567373330638147348893843162195682979930837831567158491/406374132864789485535568830738641010006981881843900455983552735670038373097016665183354880000000000000000), (3082821054136097446633578301532723765373511040807584378826594340437100408749837271438808313072673831425301721/110262848050646213741984342740417927381894417273644990390203975611803745233657188486416957440000000000000000), (702761510038261687670088737816505779409158931341992096883825617737799533968301720101017816105053606966359898899/24809140811395398091946477116594033660926243886570122837795894512655842677572867409443815424000000000000000000), (119963435698644146759244565835696900404224210124552341127287651163350581316096771870844979810255932908013403999/4180697786399224512168364214769726293193779457603834447167379119649321604202966570105831424000000000000000000), (1406460035423241057590404260616766899857530074592440183230163002965916133981894509162170322631580618742008277663199/48394364009428623211356928028769428327913459741402786282260524896020663783052140026688402620416000000000000000000), (333277618520545222760662883022099700826999531599626332026185460955974050989127407740706689109660622567726518453861839/11324281178206297831457521158732046228731749579488251990048962825668835325234200766245086213177344000000000000000000), (26658043511412111005568522355730199819899625033825111232944509558215974403492828526659776295158979047636024894828273847/894618213078297528685144171539831652069808216779571907213868063227837990693501860533361810841010176000000000000000000), (21807802149253454071147213699163251130881848138407872513794236525987877801086538862063615475276580939330630167112292859/722923808548119215099106401244308405712976336791573258354640859174010497530102513562312574416977920000000000000000000), (4784038078804768029107432120055365589300905681745911853695987661258218109167361659919484178374476239900086629774587522813/156679081641820756375127952204813759605739384992746647533672028370713248099834920439356338763506647040000000000000000000), (14689648296528529648508478558901569308757489378638989293801742546959330535300688231330603129684403814409355158046172020650963/475364333701284174842138206989404946643813294067993328617160934076743994734899148613007131808479167119360000000000000000000), (411251860047653875675505223147026077274936855421817735983219419320627289391056966158878591586997892502611113650856125419414857/13151746565735528837299157060040203523812167802547815425074785842789917187665543111626530646701256956968960000000000000000000), (733249717067277235182192447226848963118258455837238500553544323777592317209624563603061854123687233757020819007927104079766251/23176504437519952916079633420490428587417246756937409000831091135545868050991027021887312748032984287805440000000000000000000), (9016285779684763570309776512275399718175715618267932043696102549185432692609532926067254241953341795227246055681369693695251324869/281710411438055027694947944226061159480056634330574206405101912752560026159795933451040286452340924018275123200000000000000000000), (261437742454614140613426776417242241636604658233914596577364383495154615393367606070793027214953604238619916281213049202627057573213/8075698461224244127255174401147086571761623517476460583612921498906720749914150092263154878300439821857220198400000000000000000000), (6273695577973380033377366311359628131174266122020250169313633537405936529930305910556251269810079827333576482744109421413041240049757/191614299852684337928509138063580872293616703460123292029361137383150374157053924916425765748764981227703133798400000000000000000000), (198102340976093102032561128323903879227220755545633995922654495751651029535167905374288006750943876244038123659538533089345470399831399/5983311040561239971445059536953105947749063514496753118852309064093211683355748365132262620800145220271504306995200000000000000000000), (36528342657976012980378441644196372715901827890575702089662195190892599447980751341733033370019850078006483258111118429072111623603873/1091146484295621725244029298860044901172560396357759392882115189889164586845033362376886282688056095097434092339200000000000000000000), (50283921005279759902720926080199873856486989938637185917055545347650077524852599085344776177578582219271708852253346777002382060648404345371/1485715964481761497309522733620825737885569961284688766942216863704985393094065876545992131370884059645617234469978112000000000000000000000), (420506742556998624561983396656849340363092288390006427288578142566366211554177417054617431611509428183494537565830112424675058675165460449481/12290922978894572386833324432681376558871533316082425253794703145195788251959999524153207632250040857068288030615273472000000000000000000000), (143376220093054355402624933896676573656129903978367496111497711634599587715863044192013071807669064101216732507391709443492792048928816923434511/4146138018213769085158441441957851025859330571958471452280079860979379236994506506147682041279013782451035828994218917888000000000000000000000), (40427518229429847765389083754589495582507692605815217919523902626330447578818616875630919875130516425561164841578907008508260141030407367613103341/1156772507081641574759205162306240436214753229576413535186142281213246807121467315215203289516844845303838996289387078090752000000000000000000000), (3840188678972367855103906229488585348805783348156595015850354708421115357381675775638878115296608212886988963477979545734510942238509432477269942623/108736615665674308027365285256786601004186803580182872307497374434045199869417927630229109214583415458560865651202385340530688000000000000000000000), (11170245794422465209842959565889303658221367914540095666370271034753970334050549959757658406710304508129293970470196184956918665633795587208978068583/313029651158759371593930366648325063496901404245980996036734865794978605684687973480962587132891650562523704147400806283345920000000000000000000000), (35752156601232744731017366996538729597381842971337899597566802335400583977223401471197955253411422461977867249979989570788296872240522816363383165820129/991677934870949689209571401541893801158183648651267795444376054838492222809091499987689476037000748982075094738965754305639874560000000000000000000000), (269488194538177431437959007274538006533483389367156868002695449628612094139149391152208763185643555653354363580500659221569870380004505969809708431217189/7399443052498624604102186611504899900949524147628690473700344409179518893267836576831221475045313280866252629975359859049774448640000000000000000000000), (31558460190368334142403172251016987632596585387385351360123576545034640511335607814234249336435599042786906208463545257680087329214038704042662363131791/857847888696264241116224018842227907344589477120661722039697768431586774958888324586675417163320513224461356864920234819311370240000000000000000000000)]
2.718281828459045
[0, 1, (1/1), (3/2), (3/2), (15/8), (15/8), (35/16), (35/16), (315/128), (315/128), (693/256), (693/256), (3003/1024), (3003/1024), (6435/2048), (6435/2048), (109395/32768), (109395/32768), (230945/65536), (230945/65536), (969969/262144), (969969/262144), (2028117/524288), (2028117/524288), (16900975/4194304), (16900975/4194304), (35102025/8388608), (35102025/8388608), (145422675/33554432), (145422675/33554432), (300540195/67108864), (300540195/67108864), (9917826435/2147483648), (9917826435/2147483648), (20419054425/4294967296), (20419054425/4294967296), (83945001525/17179869184), (83945001525/17179869184), (172308161025/34359738368), (172308161025/34359738368), (1412926920405/274877906944), (1412926920405/274877906944), (2893136075115/549755813888), (2893136075115/549755813888), (11835556670925/2199023255552), (11835556670925/2199023255552), (24185702762325/4398046511104), (24185702762325/4398046511104), (395033145117975/70368744177664), (395033145117975/70368744177664), (805867616040669/140737488355328), (805867616040669/140737488355328), (3285460280781189/562949953421312), (3285460280781189/562949953421312), (6692604275665385/1125899906842624), (6692604275665385/1125899906842624), (54496920530418135/9007199254740992), (54496920530418135/9007199254740992), (110873045217057585/18014398509481984), (110873045217057585/18014398509481984), (450883717216034179/72057594037927936), (450883717216034179/72057594037927936), (916312070471295267/144115188075855872), (916312070471295267/144115188075855872), (59560284580634192355/9223372036854775808), (59560284580634192355/9223372036854775808), (120925426269772451145/18446744073709551616), (120925426269772451145/18446744073709551616), (490814965447899948765/73786976294838206464), (490814965447899948765/73786976294838206464), (995653215622882753209/147573952589676412928), (995653215622882753209/147573952589676412928), (8075853860052271220473/1180591620717411303424), (8075853860052271220473/1180591620717411303424), (16369974040646495717175/2361183241434822606848), (16369974040646495717175/2361183241434822606848), (66341473743672640538025/9444732965739290427392), (66341473743672640538025/9444732965739290427392), (134384010916670220577025/18889465931478580854784), (134384010916670220577025/18889465931478580854784), (2177020976850057573347805/302231454903657293676544), (2177020976850057573347805/302231454903657293676544), (4407140026306214111899215/604462909807314587353088), (4407140026306214111899215/604462909807314587353088), (17838423916001342833877775/2417851639229258349412352), (17838423916001342833877775/2417851639229258349412352), (36091694899816670384822475/4835703278458516698824704), (36091694899816670384822475/4835703278458516698824704), (292014622371243969477200025/38685626227668133590597632), (292014622371243969477200025/38685626227668133590597632), (590518458572960027165004495/77371252455336267181195264), (590518458572960027165004495/77371252455336267181195264), (2387748549881968805493279045/309485009821345068724781056), (2387748549881968805493279045/309485009821345068724781056), (4826300260399724181316202325/618970019642690137449562112), (4826300260399724181316202325/618970019642690137449562112), (156050375086257748529223875175/19807040628566084398385987584), (156050375086257748529223875175/19807040628566084398385987584), (315285451704888104171289053925/39614081257132168796771975168), (315285451704888104171289053925/39614081257132168796771975168), (1273753224887747940852007777857/158456325028528675187087900672), (1273753224887747940852007777857/158456325028528675187087900672), (2572482003204667409956015708221/316912650057057350374175801344), (2572482003204667409956015708221/316912650057057350374175801344), (20777739256653082926567819181785/2535301200456458802993406410752), (20777739256653082926567819181785/2535301200456458802993406410752), (41947511329469431568731257593415/5070602400912917605986812821504), (41947511329469431568731257593415/5070602400912917605986812821504), (169343656848598816333026188062305/20282409603651670423947251286016), (169343656848598816333026188062305/20282409603651670423947251286016), (341766289276263065690289215907561/40564819207303340847894502572032), (341766289276263065690289215907561/40564819207303340847894502572032), (5517084384031103774714668771079199/649037107316853453566312041152512), (5517084384031103774714668771079199/649037107316853453566312041152512), (11130959722168016387582226467966805/1298074214633706907132624082305024), (11130959722168016387582226467966805/1298074214633706907132624082305024), (44907665085988204046452430922486765/5192296858534827628530496329220096), (44907665085988204046452430922486765/5192296858534827628530496329220096), (90576477037840614941149818301286865/10384593717069655257060992658440192), (90576477037840614941149818301286865/10384593717069655257060992658440192), (730650248105247627191941867630380711/83076749736557242056487941267521536), (730650248105247627191941867630380711/83076749736557242056487941267521536), (1473278369130253412206702454402243073/166153499473114484112975882535043072), (1473278369130253412206702454402243073/166153499473114484112975882535043072), (5940638585202634726639929251621947875/664613997892457936451903530140172288), (5940638585202634726639929251621947875/664613997892457936451903530140172288), (11975573020964041433067793888190275875/1329227995784915872903807060280344576), (11975573020964041433067793888190275875/1329227995784915872903807060280344576), (1544848919704361344865745411576545587875/170141183460469231731687303715884105728), (1544848919704361344865745411576545587875/170141183460469231731687303715884105728), (3113464745865712864267886906408114954025/340282366920938463463374607431768211456), (3113464745865712864267886906408114954025/340282366920938463463374607431768211456), (12548206400004236695382695713705432996525/1361129467683753853853498429727072845824), (12548206400004236695382695713705432996525/1361129467683753853853498429727072845824), (25283699462695103789203939124630350067625/2722258935367507707706996859454145691648), (25283699462695103789203939124630350067625/2722258935367507707706996859454145691648), (203756872140542895242408215298491644662625/21778071482940061661655974875633165533184), (203756872140542895242408215298491644662625/21778071482940061661655974875633165533184), (410466742428050180270938288789715052291375/43556142965880123323311949751266331066368), (410466742428050180270938288789715052291375/43556142965880123323311949751266331066368), (1653594590924430726234351391981423496373825/174224571863520493293247799005065324265472), (1653594590924430726234351391981423496373825/174224571863520493293247799005065324265472), (3330479246509768927486088014835824788471225/348449143727040986586495598010130648530944), (3330479246509768927486088014835824788471225/348449143727040986586495598010130648530944), (53657721193768499387275862461243843814258625/5575186299632655785383929568162090376495104), (53657721193768499387275862461243843814258625/5575186299632655785383929568162090376495104), (108050479664163964519582901120586918365698875/11150372599265311570767859136324180752990208), (108050479664163964519582901120586918365698875/11150372599265311570767859136324180752990208), (435122201890822451713996007215336509094300875/44601490397061246283071436545296723011960832), (435122201890822451713996007215336509094300875/44601490397061246283071436545296723011960832), (876046033140189202784178627860210838309859095/89202980794122492566142873090593446023921664), (876046033140189202784178627860210838309859095/89202980794122492566142873090593446023921664), (7054475951076260422419964740137487276916233765/713623846352979940529142984724747568191373312), (7054475951076260422419964740137487276916233765/713623846352979940529142984724747568191373312), (14200568472945719032144084866510526336649561475/1427247692705959881058285969449495136382746624), (14200568472945719032144084866510526336649561475/1427247692705959881058285969449495136382746624), (57166391032114817642221059590824426534717465425/5708990770823839524233143877797980545530986496), (57166391032114817642221059590824426534717465425/5708990770823839524233143877797980545530986496), (115056407267167797533077828796722579987595911425/11417981541647679048466287755595961091061972992), (115056407267167797533077828796722579987595911425/11417981541647679048466287755595961091061972992), (3704816314002803080565106087254467075600588347885/365375409332725729550921208179070754913983135744), (3704816314002803080565106087254467075600588347885/365375409332725729550921208179070754913983135744), (7455371101017986446075460397808372016332048156855/730750818665451459101842416358141509827966271488), (7455371101017986446075460397808372016332048156855/730750818665451459101842416358141509827966271488), (30003322723608969843962218674106862992555803558075/2923003274661805836407369665432566039311865085952), (30003322723608969843962218674106862992555803558075/2923003274661805836407369665432566039311865085952), (60368131263165035710140849621395736382612279448175/5846006549323611672814739330865132078623730171904), (60368131263165035710140849621395736382612279448175/5846006549323611672814739330865132078623730171904), (485819723022613858810181123143613307079117867940075/46768052394588893382517914646921056628989841375232), (485819723022613858810181123143613307079117867940075/46768052394588893382517914646921056628989841375232), (977354972198434939488717318324210300123872416679445/93536104789177786765035829293842113257979682750464), (977354972198434939488717318324210300123872416679445/93536104789177786765035829293842113257979682750464), (3932149074193703361198792931862520509800696001989395/374144419156711147060143317175368453031918731001856), (3932149074193703361198792931862520509800696001989395/374144419156711147060143317175368453031918731001856), (7909495264182736646089526012367138956495652877564875/748288838313422294120286634350736906063837462003712), (7909495264182736646089526012367138956495652877564875/748288838313422294120286634350736906063837462003712), (127270969250940398759804191289907599572702778120816625/11972621413014756705924586149611790497021399392059392), (127270969250940398759804191289907599572702778120816625/11972621413014756705924586149611790497021399392059392), (255971949392340802000055620684196183410267385209282875/23945242826029513411849172299223580994042798784118784), (255971949392340802000055620684196183410267385209282875/23945242826029513411849172299223580994042798784118784), (1029576063111415225822445940974211315494631038286226675/95780971304118053647396689196894323976171195136475136), (1029576063111415225822445940974211315494631038286226675/95780971304118053647396689196894323976171195136475136), (2070466148894384465115468210970117260829862417652521775/191561942608236107294793378393788647952342390272950272), (2070466148894384465115468210970117260829862417652521775/191561942608236107294793378393788647952342390272950272), (16653749458498309828102679088237899706674980315900718625/1532495540865888858358347027150309183618739122183602176), (16653749458498309828102679088237899706674980315900718625/1532495540865888858358347027150309183618739122183602176), (33486571491819182127475279456994486506970121710467036375/3064991081731777716716694054300618367237478244367204352), (33486571491819182127475279456994486506970121710467036375/3064991081731777716716694054300618367237478244367204352), (134658766211783519618996336539828892549305383048473827125/12259964326927110866866776217202473468949912977468817408), (134658766211783519618996336539828892549305383048473827125/12259964326927110866866776217202473468949912977468817408), (270734993120533181549771581885340194493866612234300010325/24519928653854221733733552434404946937899825954937634816), (270734993120533181549771581885340194493866612234300010325/24519928653854221733733552434404946937899825954937634816), (17417284557420968013035305101290219179105418720406633997575/1569275433846670190958947355801916604025588861116008628224), (17417284557420968013035305101290219179105418720406633997575/1569275433846670190958947355801916604025588861116008628224), (35014128749454523325174066956201987009541821138961789995125/3138550867693340381917894711603833208051177722232017256448), (35014128749454523325174066956201987009541821138961789995125/3138550867693340381917894711603833208051177722232017256448), (140771089053929410103250840619832478385300791109703523041625/12554203470773361527671578846415332832204710888928069025792), (140771089053929410103250840619832478385300791109703523041625/12554203470773361527671578846415332832204710888928069025792), (282964108300322753641888053367138012107826842735666677629125/25108406941546723055343157692830665664409421777856138051584)]
3.149456428081303
160515
Ruby
素数でしりとり
素数を最初から順に
2 → 23 → 31 → …
とつなげていく。
オンライン整数列大辞典の
https://oeis.org/A061448/b061448.txt
に途中まで載っているが、自分で求めてみた。
(ただし、素数を列挙するという非効率なやり方です。)
出力結果
1 2
2 23
3 31
4 101
5 103
6 307
7 701
8 1009
9 9001
10 10007
11 70001
12 100003
13 300007
14 700001
15 1000003
16 3000017
17 7000003
素数でしりとり
素数を最初から順に
2 → 23 → 31 → …
とつなげていく。
オンライン整数列大辞典の
https://oeis.org/A061448/b061448.txt
に途中まで載っているが、自分で求めてみた。
(ただし、素数を列挙するという非効率なやり方です。)
require 'prime'
cnt = 0
d = 2
ary = Prime.each(10 ** 7).to_a
ary.each{|a|
str = a.to_s
if d == str[0].to_i
cnt += 1
print cnt
print ' '
puts a
d = str[-1].to_i
end
}
出力結果
1 2
2 23
3 31
4 101
5 103
6 307
7 701
8 1009
9 9001
10 10007
11 70001
12 100003
13 300007
14 700001
15 1000003
16 3000017
17 7000003
2016年5月14日土曜日
2016年5月11日水曜日
2016年5月10日火曜日
2016年5月6日金曜日
160506
Ruby
フィボナッチ数列でしりとり
フィボナッチ数列を最初から順に
1 → 13 → 34 → …
とつなげていく。
(ただし、0 が最後になればそこで終了。)
オンライン整数列大辞典の
https://oeis.org/A271750/b271750.txt
に答えが載っているが、自分で求めてみた。
出力結果
1 1
2 13
3 34
4 4181
5 10946
6 63245986
7 6557470319842
8 27777890035288
9 806515533049393
10 3416454622906707
11 7540113804746346429
12 927372692193078999176
13 6356306993006846248183
14 3311648143516982017180081
15 14028366653498915298923761
16 155576970220531065681649693
17 30960598847965113057878492344
18 42230279526998466217810220532898
19 8404037832974134882743767626780173
20 35600075545958458963222876581316753
21 394810887814999156320699623170776339
22 9663391306290450775010025392525829059713
23 3111581989804070186099320645726169127737705
24 5034645418285014325766435419644478339818233
25 34507973060837282187130139035400899082304280
フィボナッチ数列でしりとり
フィボナッチ数列を最初から順に
1 → 13 → 34 → …
とつなげていく。
(ただし、0 が最後になればそこで終了。)
オンライン整数列大辞典の
https://oeis.org/A271750/b271750.txt
に答えが載っているが、自分で求めてみた。
cnt = 1
a, b = 1, 2
d = 1
puts '1 1'
while cnt < 100
a, b = b, a + b
str = a.to_s
if d == str[0].to_i
cnt += 1
print cnt
print ' '
puts a
d = str[-1].to_i
break if d == 0
end
end
出力結果
1 1
2 13
3 34
4 4181
5 10946
6 63245986
7 6557470319842
8 27777890035288
9 806515533049393
10 3416454622906707
11 7540113804746346429
12 927372692193078999176
13 6356306993006846248183
14 3311648143516982017180081
15 14028366653498915298923761
16 155576970220531065681649693
17 30960598847965113057878492344
18 42230279526998466217810220532898
19 8404037832974134882743767626780173
20 35600075545958458963222876581316753
21 394810887814999156320699623170776339
22 9663391306290450775010025392525829059713
23 3111581989804070186099320645726169127737705
24 5034645418285014325766435419644478339818233
25 34507973060837282187130139035400899082304280
2016年5月5日木曜日
160505(6)
Ruby
Somos' sequence(2)
さらに調べてみた。
出力結果
[20, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 30, 42, 62, 92, 134, 190, 262, 352, 462, 594, 750, 932, 1142, 1382, 1654, 1960, 2302, 2682, 3102, 3564, 7656, 11844, 16212, 20916, 26240, 32668, 40972, 52316, 68376, 91476, 124740, 172260, 239280, 332396, 459772, 631372, 859208, 1157604, 1543476, 2036628, 2660064, 4142160, 8955936, 18938808, 36030864, 62317344, 100084048, 151898824, 220742016, 310222704, 424936512, 571045464, 757191600, 995894592, 1305630192, 1713841768, 2261202208, 3007518864, 4039760736, 5482785528, 7513455312, 10378954080, 25387116480, 44119896480, 74711796192, 138480973632, 281080918656, 587626657728, 1202365881376, 2353642148000, 4385117757504, 7794518336352, 13281585169248, 21807573270912, 34669680435456, 53595507963008, 80865466021792, 119475596171744, 173360548664512, 247707797408544, 349411527614688, 487740635236800, 675333498702720, 1150660706342400, 2758300160964480, 6200936883504000, 12343505240698368, 22429071407648256, 38672426413735424, 65753119195499648, 114183998588604032, 207225917397137408, 394032215329627776, 773136360594449280, 1532367481740336384, 3013950609590981632, 5817125721405880576, 10955367642996291712, 20091557989415553408, 35882723923410567680, 62476874583535398272, 106218979721245531008, 176642648689004332032, 287850721027447226880, 778958981983447034880, 1478760192728891297280, 2891776398381595456512, 6384497929441683812352, 14958111929034292572160, 34357266151315458043904, 74627038587409203121152, 152327424044635557684736, 293857575834238536006656, 540950569996059070650880, 960844708741552408181760, 1666850765451890760135680, 2861742684627974192779264, 4929641124738252831284224, 8626963253987810923709440, 15467937597484094790445568, 28478367852148480916122624, 53623239475980713978234368, 102430396462403990569149440, 196680026633001696264640512, 376575809007924851542429696, 973644713704193325865635840, 3335038629290185712865890304, 9047821633650385748361388032, 20987856613402873777700667392, 45873368891018160422435323904, 102008427984889775761198022656, 239740668244575582979232456704, 589208438330951658423952076800, 1461341595990930947339488268288, 3545782780436044243564881719296, 8276336198724564493539209543680]]
[21, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 43, 63, 93, 135, 191, 263, 353, 463, 595, 751, 933, 1143, 1383, 1655, 1961, 2303, 2683, 3103, 3565, 4071, 8717, 13463, 18395, 23671, 29577, 36599, 45511, 57479, 74181, 97943, 131891, 180119, 247873, 341751, 469919, 642343, 871037, 1170327, 1557131, 2051255, 2675705, 3457015, 5300534, 11266941, 23617108, 44728043, 77140082, 123617201, 187233648, 271509823, 380634286, 519827717, 695929356, 918317683, 1200315626, 1561277177, 2029607720, 2647035399, 3474526246, 4600322317, 6150680516, 8304000891, 11309157730, 15508985537, 37709617409, 65091818633, 108702114401, 197305505417, 392295629185, 807839495361, 1636954090881, 3184422641073, 5907715923329, 10467419859289, 17789141041057, 29139566224441, 46220458492929, 71286155823697, 107293026999233, 158093987097121, 228698539887617, 325630273709993, 457431219287265, 635388629604201, 874598130920577, 1195532549826913, 2002247268081345, 4719107435965913, 10519917366605857, 20831629425236121, 37657710386424769, 64454853148219297, 108322412614340097, 184920569112935153, 328532397644751425, 611134618616829321, 1176376152670921697, 2297151086552263273, 4469205517466106689, 8558205156709309841, 16024256977186619073, 29256470253923508481, 52061350531526778817, 90363444859706185145, 153195816343762314145, 254083233052319488185, 412954804799412373697, 658768831991706104833, 1756122109482775623586, 3281868401819491670347, 6243344605647194093636, 13348344611975743637309, 30515969147343030375142, 69027603915837954517063, 148515793669939573145192, 301149617361901001393497, 577768404233521300369706, 1057688296318846851551971, 1866199190889300997318156, 3208842323329369156155861, 5442105846903825660124526, 9220920713770329864227999, 15802217987191214608671280, 27653696863155871306012721, 49638139896378945788402354, 91247299039359412906639611, 170692559773060717438938580, 322191826290711206530128877, 608624773818443234914141174, 1143007796165579308198982519, 2881948089716015588746477561, 9670925579361578182965663303]]
[22, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 32, 44, 64, 94, 136, 192, 264, 354, 464, 596, 752, 934, 1144, 1384, 1656, 1962, 2304, 2684, 3104, 3566, 4072, 4624, 9872, 15224, 20768, 26664, 33200, 40864, 50432, 63072, 80464, 104936, 139616, 188600, 257136, 351824, 480832, 654128, 883728, 1183960, 1571744, 2066888, 2692400, 3474816, 4444544, 6716928, 14047424, 29195584, 55051712, 94689152, 151429888, 228936704, 331354880, 463540352, 631430208, 842636096, 1107372352, 1439869184, 1860467840, 2398650112, 3097319552, 4018727168, 5252520896, 6926496576, 9220739264, 12385968256, 16767037952, 22832700416, 55202876416, 94688424448, 156109560320, 277820310016, 541420425216, 1098294335488, 2203823398912, 4260367296512, 7870410829824, 13901655544320, 23566358788608, 38517986355712, 60969418157056, 93838804696064, 140932146563072, 207176413086720, 298924490949632, 424364837065216, 594086332705280, 821875146953216, 1125858986784768, 1530169670496256, 2067373691846656, 3407960631402496, 7905420656205824, 17482574821658624, 34450966301786112, 61988088128471040, 105413218071281664, 175351126580199424, 294808772305289216, 513608258905309184, 935667214792114176, 1767477002526789632, 3400025070451548160, 6541621277952761856, 12425971422111809536, 23128839421425565696, 42038320913975361536, 74538852803785170944, 128988583484847562752, 218094959413567393792, 360826215694676819968, 585039595989947531264, 931064584202652614656, 1456557282795395874816, 3830106743130038730752, 7057750621718428057600, 13095470346583270490112, 27163481972854196404224, 60623406166187053154304, 135046082557468941484032, 287811775953795746365440, 579846338324986026524672, 1106722682079721429139456, 2015885099458933023440896, 3536330018960054635724800, 6034949175448602726563840, 10130047105203411845120000, 16924509731471197662478336, 28480816569620955326840832, 48767092251481068754567168]]
[23, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 33, 45, 65, 95, 137, 193, 265, 355, 465, 597, 753, 935, 1145, 1385, 1657, 1963, 2305, 2685, 3105, 3567, 4073, 4625, 5225, 11125, 17133, 23339, 29905, 37121, 45477, 55751, 69113, 87245, 112477, 147939, 197729, 267097, 362645, 492543, 666761, 897317, 1198541, 1587355, 2083569, 2710193, 3493765, 4464695, 5657625, 8435360, 17369315, 35802614, 67224949, 115330364, 184088543, 277842898, 401458481, 560556696, 761892731, 1013956334, 1327907789, 1718999476, 2208679991, 2827633226, 3620069833, 4649663888, 6007614099, 7823407334, 10278973349, 13627044140, 18214670095, 24512998850, 33154592225, 79726113325, 135951813445, 221493390205, 386931262449, 739553694413, 1477968859493, 2936559934941, 5641097999521, 10377177009517, 18273572244773, 30903206564413, 50405238945777, 79633037643277, 122334742371973, 183376188670109, 269020817825249, 387288790380717, 548429240102277, 765557380702461, 1055534660890225, 1440208926482765, 1948187325925925, 2617393671359325, 3498772111198625, 5683778810524725, 12988450313416925, 28506184676476645, 55918529528510225, 100189898388705013, 169399012284051837, 279248538727454373, 463111051172028513, 792457223478462005, 1415370644286959101, 2624826207302885093, 4973794735936598417, 9461404578894297589, 17823799571971210845, 32975554167268440997, 59663261685373830817, 105413121300289743413, 181880211370634140317, 306740246915421853925, 506307163136788007825, 819114926697262651125, 1300774016348042164925, 2030508647779623785125, 3119909998602613398625, 8102182137481503865250, 14742093701897503069175, 26741294462536401665500, 53911616705286358093925, 117522184198473765948550, 257812515593160048657787, 544251203597994986986176, 1089539301443255959108745]]
[24, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 34, 46, 66, 96, 138, 194, 266, 356, 466, 598, 754, 936, 1146, 1386, 1658, 1964, 2306, 2686, 3106, 3568, 4074, 4626, 5226, 5876, 12480, 19196, 26116, 33404, 41352, 50452, 61484, 75620, 94544, 120588, 156884, 207532, 277784, 374244, 505084, 680276, 911840, 1214108, 1604004, 2101340, 2729128, 3513908, 4486092, 5680324, 7135856, 10505248, 21312304, 43579080, 81491264, 139461872, 222208640, 334858456, 483101904, 673434944, 913543696, 1212913000, 1583770656, 2042517776, 2611842272, 3323767928, 4223956528, 5377655904, 6877773296, 8855651848, 11495239168, 15051461424, 19873755200, 26435863064, 35373168272, 47529030016, 113704259968, 192833174144, 310731494944, 533427369056, 1000575164480, 1970174383520, 3875815505760, 7398021049536, 13551655723008, 23791877941312, 40141755430816, 65345572561568, 103053188165824, 158042837674592, 236492946314976, 346318487191040, 497595143914112, 703106403709952, 979066647921952, 1346099976013536, 1830593470944576, 2466599625243936, 3298541884717664, 4385087703360832, 5804705290598656, 9302895382084096, 20960198924051712, 45670591326199424, 89205804680370560, 159213909008972800, 267815233025212800, 437949792810940800, 717460584179189760, 1207650927875039232, 2116999190040963072, 3856174148620173952, 7197862874965902464, 13534682168223663616, 25281186739689695360, 46482444707443362176, 83712735421327757056, 147374784571276307968, 253544056055146271488, 426545888052622589568, 702508262221290874752, 1134203268470356850688, 1797580880145212782464, 2800516742335613448576, 4294452016113189998080, 6489813940394704331776]]
[25, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 35, 47, 67, 97, 139, 195, 267, 357, 467, 599, 755, 937, 1147, 1387, 1659, 1965, 2307, 2687, 3107, 3569, 4075, 4627, 5227, 5877, 6579, 13941, 21419, 29107, 37171, 45905, 55803, 67647, 82611, 102381, 129291, 166475, 218035, 289225, 386651, 518487, 694707, 927333, 1230699, 1621731, 2120243, 2749249, 3535291, 4508783, 5704371, 7161309, 8923851, 12981834, 25964361, 52679080, 98115631, 167515686, 266456877, 400964004, 577670643, 804068226, 1088898609, 1442770848, 1879114135, 2415617374, 3076352469, 3894833820, 4918331547, 6213831354, 7876120473, 10038577560, 12887355519, 16679770774, 21767851261, 28628149140, 37899093699, 50427345906, 67324819329, 160271053137, 270418959297, 431339618961, 728414682073, 1341739076561, 2603393360841, 5070540418545, 9616206905361, 17540079266769, 30702211946673, 51683271869777, 83975931978793, 132213450495569, 202443610753657, 302459484256689, 442203574972449, 634269772099665, 894539565179169, 1243007095819281, 1704874490147833, 2312038112190161, 3105142640393385, 4136459386776945, 5473956026558385, 7207077040760529, 9454960484128017, 14963601160264401, 33266537977597425, 71986867934392497, 140041000763634297, 249057224673251345, 417012200783523881, 677060750076004497, 1097049810569011329, 1818981004342892241, 3133073830274926081, 5608509647747910001, 10312920238838113577, 19165848609356022289, 35488515242975515001, 64834202679764374097, 116211574230170388081, 203848698443298239697, 349690261861585347729]]
[26, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 36, 48, 68, 98, 140, 196, 268, 358, 468, 600, 756, 938, 1148, 1388, 1660, 1966, 2308, 2688, 3108, 3570, 4076, 4628, 5228, 5878, 6580, 7336, 15512, 23808, 32320, 41216, 50792, 61544, 74256, 90104, 110776, 138608, 176736, 229264, 301448, 399896, 532784, 710088, 943832, 1248352, 1640576, 2140320, 2770600, 3557960, 4532816, 5729816, 7188216, 8952272, 11071648, 15926624, 31422272, 63270656, 117385536, 199959200, 317553376, 477217664, 686658656, 954496864, 1290667520, 1707046016, 2218409984, 2843888544, 3609095840, 4549201408, 5713254944, 7170158432, 9016765120, 11388683264, 14474473664, 18534054560, 23922266208, 31118701184, 40765075936, 53711605088, 71074043264, 94303280512, 223441447936, 375202727168, 592853658624, 985832805120, 1784373488640, 3412253918080, 6579396971776, 12396515090048, 22514537527808, 39292203346944, 65996015372288, 107037832662016, 168256906098176, 257255413983872, 383799968894208, 560306803033984, 802436365115392, 1129835262757632, 1567081799085056, 2144918438518016, 2901893973972992, 3886594698164608, 5160723697603840, 6803398468171904, 8917189554314752, 11636629632385536, 15140199341037568, 23682429547296768, 51987890433273856, 111759844778143744, 216584507482681344, 383924291748505600, 640156543940347904, 1032722711753102336, 1656874090723301376, 2709618398587793408, 4590756041977643008, 8080904265710387200]]
[27, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 37, 49, 69, 99, 141, 197, 269, 359, 469, 601, 757, 939, 1149, 1389, 1661, 1967, 2309, 2689, 3109, 3571, 4077, 4629, 5229, 5879, 6581, 7337, 8149, 17197, 26369, 35763, 45549, 56025, 67689, 81327, 98117, 119749, 148561, 187691, 241245, 314481, 414009, 548007, 726453, 961373, 1267105, 1660579, 2161613, 2793225, 3581961, 4558239, 5756709, 7216629, 8982257, 11103259, 13635133, 19407844, 37792191, 75536538, 139612041, 237296736, 376273899, 564758166, 811672629, 1126914076, 1521762487, 2009515602, 2606460609, 3333333528, 4217463459, 5295854286, 6619521453, 8259476820, 10314841135, 12923662090, 16277127033, 20637983952, 26364123099, 33938425350, 44006152869, 57421343628, 75303874599, 99109079746, 130712049073, 308318031917, 515409846541, 807284827389, 1323066488913, 2354701127949, 4438660111101, 8472376131549, 15857991494161, 28676620098029, 49897059059469, 83623793405373, 135390323989233, 212505490334925, 324462838451517, 483426637214877, 704813536948977, 1007997060316077, 1417174506012045, 1962454370679421, 2681249714188817, 3620102589782157, 4837121478586365, 6405293802792285, 8417047025455185, 10990584739284333, 14278731298006157, 18481295904357181, 23862334343781809, 36920603864882389, 80082087562798709, 171072542454765701, 330328592942600721]]
[28, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 38, 50, 70, 100, 142, 198, 270, 360, 470, 602, 758, 940, 1150, 1390, 1662, 1968, 2310, 2690, 3110, 3572, 4078, 4630, 5230, 5880, 6582, 7338, 8150, 9020, 19000, 29108, 39444, 50180, 61616, 74252, 88876, 106668, 129320, 159172, 199364, 254004, 328352, 429020, 564188, 743836, 979992, 1286996, 1681780, 2184164, 2817168, 3607340, 4585100, 5785100, 7246600, 9013860, 11136548, 13670164, 16676480, 23500912, 45190208, 89674904, 165130864, 280071104, 443452080, 664807976, 954436256, 1323671696, 1785305056, 2354227256, 3048411152, 3890381536, 4909370576, 6144411336, 7648687040, 9495529136, 11786543744, 14662444504, 18317280944, 23016876032, 29122425328, 37120363880, 47659776480, 61598812880, 80061772832, 104508747128, 136819940944, 179397065504, 421336666688, 701383094496, 1089658593632, 1761666225664, 3084798914816, 5733098588672, 10832642217376, 20140567933024, 36261470195392, 62905726146720, 105195329647328, 170024112343616, 266480999496576, 406347465665728, 604684061765920, 880526443529120, 1257719713871680, 1765932487620192, 2441910839326816, 3331059866197120, 4489480572826112, 5986646910338432, 7908988277743776, 10364754603160800, 13490694432345024, 17461284061415968]]
[29, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 39, 51, 71, 101, 143, 199, 271, 361, 471, 603, 759, 941, 1151, 1391, 1663, 1969, 2311, 2691, 3111, 3573, 4079, 4631, 5231, 5881, 6583, 7339, 8151, 9021, 9951, 20925, 32031, 43371, 55119, 67577, 81247, 96919, 115775, 139509, 170463, 211779, 267567, 343089, 444959, 581359, 762271, 999725, 1308063, 1704219, 2208015, 2842473, 3634143, 4613447, 5815039, 7278181, 9047135, 11171571, 13706991, 16715169, 20264607, 28288926, 53742933, 105900156, 194303475, 328865178, 519981673, 778676440, 1116794535, 1547285910, 2084633757, 2745508788, 3549761595, 4521903762, 5693274993, 7105148944, 8813095471, 10892992398, 13449166437, 16625241324, 20618382339, 25697750922, 32228121849, 40699769160, 51765896503, 66289073542, 85398343341, 110558886948, 143656371531, 187098368130, 243935505153, 570557171457, 946038069945, 1458649499553, 2328193264617, 4013715109761, 7356144501393, 13758632896321, 25408096619825, 45542289783681, 78767676516297, 131434505227233, 212076919404249, 331927848023553, 505521089098337, 751396873962625, 1092932942452961, 1559331744041473, 2186807198843481, 3020033450397729, 4113945884347209]]
[30, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 40, 52, 72, 102, 144, 200, 272, 362, 472, 604, 760, 942, 1152, 1392, 1664, 1970, 2312, 2692, 3112, 3574, 4080, 4632, 5232, 5882, 6584, 7340, 8152, 9022, 9952, 10944, 22976, 35144, 47552, 60376, 73920, 88688, 105472, 125456, 150336, 182456, 224960, 281960, 358720, 461856, 599552, 781792, 1020608, 1330344, 1727936, 2233208, 2869184, 3662416, 4643328, 5846576, 7311424, 9082136, 11208384, 13745672, 16755776, 20307200, 24475648, 33863168, 63588096, 124443712, 227518208, 384303488, 606818816, 907762944, 1300718080, 1800443008, 2423311616, 3187977792, 4116378880, 5235228416, 6578195456, 8189023232, 10125904896, 12467509504, 15321137920, 18833586752, 23205409536, 28709388928, 35714172416, 44714177792, 56367044096, 71540089728, 91367442688, 117319729216, 151288447232, 195687410688, 253573931008, 328792702976, 766005493760, 1265398304768, 1937325258752, 3055206093824, 5188764995584, 9380191795200, 17366444433408, 31851755218944, 56835338645504, 98000365868032, 163171536812032, 262850155460608, 410837677154304, 624961535451136]]
[31, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 41, 53, 73, 103, 145, 201, 273, 363, 473, 605, 761, 943, 1153, 1393, 1665, 1971, 2313, 2693, 3113, 3575, 4081, 4633, 5233, 5883, 6585, 7341, 8153, 9023, 9953, 10945, 12001, 25157, 38453, 51995, 65961, 80657, 96589, 114551, 135729, 161821, 195173, 238931, 297209, 375273, 479741, 618799, 802433, 1042677, 1353877, 1752971, 2259785, 2897345, 3692205, 4674791, 5879761, 7346381, 9118917, 11247043, 13786265, 16798361, 20351837, 24522399, 29393441, 40323624, 74875163, 145554814, 265191389, 447053828, 704984311, 1053560090, 1508307449, 2086005152, 2805133683, 3686551286, 4754509045, 6038155772, 7573730063, 9407692306, 11601114449, 14235720728, 17422059083, 21310381422, 26104921997, 32082387700, 39615612839, 49203484682, 61508415529, 77402823056, 98026283939, 124855247078, 159787432869, 205243304684, 264287278783, 340771640066, 439506454145, 1020074487949, 1679220980437, 2554014909149, 3982407168433, 6667028101293, 11891435488405, 21792534975805, 39693861349505]]
[32, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 42, 54, 74, 104, 146, 202, 274, 364, 474, 606, 762, 944, 1154, 1394, 1666, 1972, 2314, 2694, 3114, 3576, 4082, 4634, 5234, 5884, 6586, 7342, 8154, 9024, 9954, 10946, 12002, 13124, 27472, 41964, 56708, 71884, 87800, 104964, 124172, 146612, 173984, 208636, 253716, 313340, 392776, 498644, 639132, 824228, 1065968, 1378700, 1779364, 2287788, 2927000, 3723556, 4707884, 5914644, 7383104, 9157532, 11287604, 13828828, 16842984, 20398580, 24571324, 29444612, 35110032, 47779520, 87765968, 169501352, 307768480, 517828880, 815565920, 1217656888, 1741797488, 2407016160, 3234134576, 4246455368, 5470789376, 6938973232, 8690074688, 10773538520, 13253590864, 16215295232, 19772739984, 24079935464, 29345110112, 35849219408, 43969620256, 54210017144, 67237955888, 83931326752, 105435542000, 133233274248, 169228882112, 215849909360, 276168323840, 354044463640, 454296981008, 582902420288, 1347991143424, 2211725253568]]
[33, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 43, 55, 75, 105, 147, 203, 275, 365, 475, 607, 763, 945, 1155, 1395, 1667, 1973, 2315, 2695, 3115, 3577, 4083, 4635, 5235, 5885, 6587, 7343, 8155, 9025, 9955, 10947, 12003, 13125, 14315, 29925, 45683, 61699, 78155, 95361, 113827, 134351, 158123, 186845, 222867, 269339, 330379, 411257, 518595, 660583, 847211, 1090517, 1404851, 1807155, 2317259, 2958193, 3756515, 4742655, 5951275, 7421645, 9198035, 11330123, 13873419, 16889705, 20447491, 24622487, 29498091, 35165893, 41726195, 56349874, 102435361, 196570704, 355725239, 597387854, 939720677, 1401741964, 2003561691, 2766707306, 3714596041, 4873234888, 6272260575, 7946470406, 9938041421, 12299690756, 15099095107, 18424962594, 22395236849, 27168011584, 32955844999, 40044287934, 48815578421, 59778609020, 73606442795, 91182839770, 113659458969, 142525622456, 179692767919, 227595976054, 289315239069]]
[34, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 44, 56, 76, 106, 148, 204, 276, 366, 476, 608, 764, 946, 1156, 1396, 1668, 1974, 2316, 2696, 3116, 3578, 4084, 4636, 5236, 5886, 6588, 7344, 8156, 9026, 9956, 10948, 12004, 13126, 14316, 15576, 32520, 49616, 66976, 84784, 103352, 123192, 145104, 170280, 200424, 237888, 285824, 348352, 430744, 539624, 683184, 871416, 1116360, 1432368, 1836384, 2348240, 2990968, 3791128, 4779152, 5989704, 7462056, 9240480, 11374656, 13920096, 16938584, 20498632, 24675952, 29553944, 35224200, 41787024, 49351968, 66164064, 119071872, 227070592, 409568896, 686538144, 1078677216, 1607606784, 2296116576, 3168503136, 4251054528, 5572763136, 7166378944, 9069954208, 11329077024, 14000046720, 17154309024, 20884544352, 25312889088, 30601868160, 36968728320, 44703986080, 54195143008, 65956674816, 80667570144, 99217880928]]
[35, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 45, 57, 77, 107, 149, 205, 277, 367, 477, 609, 765, 947, 1157, 1397, 1669, 1975, 2317, 2697, 3117, 3579, 4085, 4637, 5237, 5887, 6589, 7345, 8157, 9027, 9957, 10949, 12005, 13127, 14317, 15577, 16909, 35261, 53769, 72547, 91781, 111785, 133073, 156447, 183101, 214741, 253721, 303195, 367285, 451265, 561761, 706967, 896877, 1143533, 1461289, 1867091, 2380773, 3025369, 3827441, 4817423, 6029981, 7504389, 9284921, 11421259, 13968917, 16989681, 20552065, 24731783, 29612237, 35285021, 41850441, 49418051, 58107205, 77362412, 137878391, 261329954, 469839345, 786137000, 1233738115, 1837148894, 2622126077, 3616027300, 4848308783, 6351251546, 8161028585, 10319263968, 12875281403, 15889295254, 19436862005, 23614985564, 28550356327, 34410302354, 41417142113]]
[36, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 46, 58, 78, 108, 150, 206, 278, 368, 478, 610, 766, 948, 1158, 1398, 1670, 1976, 2318, 2698, 3118, 3580, 4086, 4638, 5238, 5888, 6590, 7346, 8158, 9028, 9958, 10950, 12006, 13128, 14318, 15578, 16910, 18316, 38152, 58148, 78420, 99156, 120672, 143484, 168396, 196604, 229816, 270388, 321476, 387204, 472848, 585036, 731964, 923628, 1172072, 1491652, 1899316, 2414900, 3061440, 3865500, 4857516, 6072156, 7548696, 9331412, 11469988, 14019940, 17043056, 20607852, 24790044, 29673036, 35348424, 41916516, 49486868, 58178836, 68122144, 90096784, 159072864, 299699832, 537110352, 897093216, 1406282256, 2092375176, 2984405952, 4113108400, 5511427456, 7215259416, 9264533616, 11704786560, 14589426096, 17982938664]]
[37, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 47, 59, 79, 109, 151, 207, 279, 369, 479, 611, 767, 949, 1159, 1399, 1671, 1977, 2319, 2699, 3119, 3581, 4087, 4639, 5239, 5889, 6591, 7347, 8159, 9029, 9959, 10951, 12007, 13129, 14319, 15579, 16911, 18317, 19799, 41197, 62759, 84603, 106919, 130025, 154439, 180967, 210807, 245669, 287911, 340691, 408135, 495521, 609479, 758207, 951703, 1202013, 1523495, 1933099, 2450663, 3099225, 3905351, 4899479, 6116279, 7595029, 9380007, 11520899, 14073223, 17098769, 20666055, 24850799, 29736407, 35414477, 41985319, 49558491, 58253351, 68199625, 79537991, 104531206, 182889005, 342554276, 611990779, 1020368834, 1597767201, 2375405120, 3385928207, 4663785854, 6245756725]]
[38, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 48, 60, 80, 110, 152, 208, 280, 370, 480, 612, 768, 950, 1160, 1400, 1672, 1978, 2320, 2700, 3120, 3582, 4088, 4640, 5240, 5890, 6592, 7348, 8160, 9030, 9960, 10952, 12008, 13130, 14320, 15580, 16912, 18318, 19800, 21360, 44400, 67608, 91104, 115080, 139856, 165952, 194176, 225728, 262320, 306312, 360864, 430104, 519312, 635120, 785728, 981136, 1233392, 1556856, 1968480, 2488104, 3138768, 3947040, 4943360, 6162400, 7643440, 9430760, 11574048, 14128824, 17156880, 20726736, 24914112, 29802416, 35483248, 42056920, 49632992, 58330824, 68280144, 79621632, 92507520, 120842496, 209577024, 390291264, 695125824, 1156980864]]
[39, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 49, 61, 81, 111, 153, 209, 281, 371, 481, 613, 769, 951, 1161, 1401, 1673, 1979, 2321, 2701, 3121, 3583, 4089, 4641, 5241, 5891, 6593, 7349, 8161, 9031, 9961, 10953, 12009, 13131, 14321, 15581, 16913, 18319, 19801, 21361, 23001, 47765, 72701, 97931, 123649, 150177, 178037, 208039, 241385, 279789, 325613, 382019, 453137, 544249, 661989, 814559, 1011961, 1266245, 1591773, 2005499, 2527265, 3180113, 3990613, 4989207, 6210569, 7693981, 9483725, 11629491, 14186801, 17217449, 20789957, 24980047, 29871129, 35554805, 42131389, 49710443, 58411329, 68363777, 79708469, 92597639, 107195689]]
[40, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 50, 62, 82, 112, 154, 210, 282, 372, 482, 614, 770, 952, 1162, 1402, 1674, 1980, 2322, 2702, 3122, 3584, 4090, 4642, 5242, 5892, 6594, 7350, 8162, 9032, 9962, 10954, 12010, 13132, 14322, 15582, 16914, 18320, 19802, 21362, 23002, 24724, 51296, 78044, 105092, 132636, 161000, 190708, 222572, 257796, 298096, 345836, 404180, 477260, 570360, 690116, 844732, 1044212, 1300608, 1628284, 2044196, 2568188, 3223304, 4036116, 5037068, 6260836, 7746704, 9538956, 11687284, 14247212, 17280536, 20855780, 25048668, 29942612, 35629216, 42208796, 49790916, 58494940]]
[41, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 51, 63, 83, 113, 155, 211, 283, 373, 483, 615, 771, 953, 1163, 1403, 1675, 1981, 2323, 2703, 3123, 3585, 4091, 4643, 5243, 5893, 6595, 7351, 8163, 9033, 9963, 10955, 12011, 13133, 14323, 15583, 16915, 18321, 19803, 21363, 23003, 24725, 26531, 54997, 83643, 112595, 142051, 172337, 203979, 237791, 274979, 317261, 367003, 427371, 502499, 597673, 719531, 876279, 1077923, 1336517, 1666427, 2084611, 2610915, 3268385, 4083595, 5086991, 6313251, 7801661, 9596507, 11747483, 14310115, 17346201, 20924267, 25120039, 30016931]]
[42, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 52, 64, 84, 114, 156, 212, 284, 374, 484, 616, 772, 954, 1164, 1404, 1676, 1982, 2324, 2704, 3124, 3586, 4092, 4644, 5244, 5894, 6596, 7352, 8164, 9034, 9964, 10956, 12012, 13134, 14324, 15584, 16916, 18322, 19804, 21364, 23004, 24726, 26532, 28424, 58872, 89504, 120448, 151904, 184200, 217864, 253712, 292952, 337304, 389136, 451616, 528880, 626216, 750264, 909232, 1113128, 1374008, 1706240, 2126784, 2655488, 3315400, 4133096, 5139024, 6367864, 7858904, 9656432, 11810144, 14375568]]
[43, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 53, 65, 85, 115, 157, 213, 285, 375, 485, 617, 773, 955, 1165, 1405, 1677, 1983, 2325, 2705, 3125, 3587, 4093, 4645, 5245, 5895, 6597, 7353, 8165, 9035, 9965, 10957, 12013, 13135, 14325, 15585, 16917, 18323, 19805, 21365, 23005, 24727, 26533, 28425, 30405, 62925, 95633, 128659, 162205, 196601, 232377, 270351, 311733, 358245, 412257, 476939, 556429, 656017, 782345, 943623, 1149861, 1413117, 1747761, 2170755, 2701949, 3364393, 4184665, 5193215, 6424725]]
[44, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 54, 66, 86, 116, 158, 214, 286, 376, 486, 618, 774, 956, 1166, 1406, 1678, 1984, 2326, 2706, 3126, 3588, 4094, 4646, 5246, 5896, 6598, 7354, 8166, 9036, 9966, 10958, 12014, 13136, 14326, 15586, 16918, 18324, 19806, 21366, 23006, 24728, 26534, 28426, 30406, 32476, 67160, 102036, 137236, 172964, 209552, 247532, 287724, 331340, 380104, 436388, 503364, 585172, 687104, 815804, 979484, 1188156, 1453880, 1791028, 2216564, 2750340]]
[45, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 55, 67, 87, 117, 159, 215, 287, 377, 487, 619, 775, 957, 1167, 1407, 1679, 1985, 2327, 2707, 3127, 3589, 4095, 4647, 5247, 5897, 6599, 7355, 8167, 9037, 9967, 10959, 12015, 13137, 14327, 15587, 16919, 18325, 19807, 21367, 23007, 24729, 26535, 28427, 30407, 32477, 34639, 71581, 108719, 146187, 184191, 223065, 263343, 305847, 351791, 402901, 461551, 530915, 615135, 719505, 850671, 1016847, 1228047]]
[46, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 56, 68, 88, 118, 160, 216, 288, 378, 488, 620, 776, 958, 1168, 1408, 1680, 1986, 2328, 2708, 3128, 3590, 4096, 4648, 5248, 5898, 6600, 7356, 8168, 9038, 9968, 10960, 12016, 13138, 14328, 15588, 16920, 18326, 19808, 21368, 23008, 24730, 26536, 28428, 30408, 32478, 34640, 36896, 76192, 115688, 155520, 195896, 237152, 279824, 324736, 373104, 426656, 487768, 559616, 646344]]
[47, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 57, 69, 89, 119, 161, 217, 289, 379, 489, 621, 777, 959, 1169, 1409, 1681, 1987, 2329, 2709, 3129, 3591, 4097, 4649, 5249, 5899, 6601, 7357, 8169, 9039, 9969, 10961, 12017, 13139, 14329, 15589, 16921, 18327, 19809, 21369, 23009, 24731, 26537, 28429, 30409, 32479, 34641, 36897, 39249, 80997, 122949, 165243, 208089, 251825, 296989, 344407, 395297]]
[48, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 58, 70, 90, 120, 162, 218, 290, 380, 490, 622, 778, 960, 1170, 1410, 1682, 1988, 2330, 2710, 3130, 3592, 4098, 4650, 5250, 5900, 6602, 7358, 8170, 9040, 9970, 10962, 12018, 13140, 14330, 15590, 16922, 18328, 19810, 21370, 23010, 24732, 26538, 28430, 30410, 32480, 34642, 36898, 39250, 41700, 86000, 130508, 175364, 220780]]
[49, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 59, 71, 91, 121, 163, 219, 291, 381, 491, 623, 779, 961, 1171, 1411, 1683, 1989, 2331, 2711, 3131, 3593, 4099, 4651, 5251, 5901, 6603, 7359, 8171, 9041, 9971, 10963, 12019, 13141, 14331, 15591, 16923, 18329, 19811, 21371, 23011, 24733, 26539, 28431, 30411, 32481, 34643, 36899, 39251, 41701, 44251]]
[50, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 60, 72, 92, 122, 164, 220, 292, 382, 492, 624, 780, 962, 1172, 1412, 1684, 1990, 2332, 2712, 3132, 3594, 4100, 4652, 5252, 5902, 6604, 7360, 8172, 9042, 9972, 10964, 12020, 13142, 14332, 15592, 16924, 18330, 19812, 21372, 23012, 24734, 26540, 28432, 30412, 32482, 34644, 36900]]
Somos' sequence(2)
さらに調べてみた。
def b(k, n)
b = Array.new(2 * k + 3, 1)
(2 * k + 3..n).each{|i|
j = (b[i - 1] * b[i - 2 * k - 2] + b[i - k - 1] * b[i - k - 2]) / b[i - 2 * k - 3].to_r
j = j.to_i if j.denominator == 1
b[i] = j
}
b[0..n]
end
(20..50).each{|i| p [i, b(i, 200)]}
出力結果
[20, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 30, 42, 62, 92, 134, 190, 262, 352, 462, 594, 750, 932, 1142, 1382, 1654, 1960, 2302, 2682, 3102, 3564, 7656, 11844, 16212, 20916, 26240, 32668, 40972, 52316, 68376, 91476, 124740, 172260, 239280, 332396, 459772, 631372, 859208, 1157604, 1543476, 2036628, 2660064, 4142160, 8955936, 18938808, 36030864, 62317344, 100084048, 151898824, 220742016, 310222704, 424936512, 571045464, 757191600, 995894592, 1305630192, 1713841768, 2261202208, 3007518864, 4039760736, 5482785528, 7513455312, 10378954080, 25387116480, 44119896480, 74711796192, 138480973632, 281080918656, 587626657728, 1202365881376, 2353642148000, 4385117757504, 7794518336352, 13281585169248, 21807573270912, 34669680435456, 53595507963008, 80865466021792, 119475596171744, 173360548664512, 247707797408544, 349411527614688, 487740635236800, 675333498702720, 1150660706342400, 2758300160964480, 6200936883504000, 12343505240698368, 22429071407648256, 38672426413735424, 65753119195499648, 114183998588604032, 207225917397137408, 394032215329627776, 773136360594449280, 1532367481740336384, 3013950609590981632, 5817125721405880576, 10955367642996291712, 20091557989415553408, 35882723923410567680, 62476874583535398272, 106218979721245531008, 176642648689004332032, 287850721027447226880, 778958981983447034880, 1478760192728891297280, 2891776398381595456512, 6384497929441683812352, 14958111929034292572160, 34357266151315458043904, 74627038587409203121152, 152327424044635557684736, 293857575834238536006656, 540950569996059070650880, 960844708741552408181760, 1666850765451890760135680, 2861742684627974192779264, 4929641124738252831284224, 8626963253987810923709440, 15467937597484094790445568, 28478367852148480916122624, 53623239475980713978234368, 102430396462403990569149440, 196680026633001696264640512, 376575809007924851542429696, 973644713704193325865635840, 3335038629290185712865890304, 9047821633650385748361388032, 20987856613402873777700667392, 45873368891018160422435323904, 102008427984889775761198022656, 239740668244575582979232456704, 589208438330951658423952076800, 1461341595990930947339488268288, 3545782780436044243564881719296, 8276336198724564493539209543680]]
[21, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 43, 63, 93, 135, 191, 263, 353, 463, 595, 751, 933, 1143, 1383, 1655, 1961, 2303, 2683, 3103, 3565, 4071, 8717, 13463, 18395, 23671, 29577, 36599, 45511, 57479, 74181, 97943, 131891, 180119, 247873, 341751, 469919, 642343, 871037, 1170327, 1557131, 2051255, 2675705, 3457015, 5300534, 11266941, 23617108, 44728043, 77140082, 123617201, 187233648, 271509823, 380634286, 519827717, 695929356, 918317683, 1200315626, 1561277177, 2029607720, 2647035399, 3474526246, 4600322317, 6150680516, 8304000891, 11309157730, 15508985537, 37709617409, 65091818633, 108702114401, 197305505417, 392295629185, 807839495361, 1636954090881, 3184422641073, 5907715923329, 10467419859289, 17789141041057, 29139566224441, 46220458492929, 71286155823697, 107293026999233, 158093987097121, 228698539887617, 325630273709993, 457431219287265, 635388629604201, 874598130920577, 1195532549826913, 2002247268081345, 4719107435965913, 10519917366605857, 20831629425236121, 37657710386424769, 64454853148219297, 108322412614340097, 184920569112935153, 328532397644751425, 611134618616829321, 1176376152670921697, 2297151086552263273, 4469205517466106689, 8558205156709309841, 16024256977186619073, 29256470253923508481, 52061350531526778817, 90363444859706185145, 153195816343762314145, 254083233052319488185, 412954804799412373697, 658768831991706104833, 1756122109482775623586, 3281868401819491670347, 6243344605647194093636, 13348344611975743637309, 30515969147343030375142, 69027603915837954517063, 148515793669939573145192, 301149617361901001393497, 577768404233521300369706, 1057688296318846851551971, 1866199190889300997318156, 3208842323329369156155861, 5442105846903825660124526, 9220920713770329864227999, 15802217987191214608671280, 27653696863155871306012721, 49638139896378945788402354, 91247299039359412906639611, 170692559773060717438938580, 322191826290711206530128877, 608624773818443234914141174, 1143007796165579308198982519, 2881948089716015588746477561, 9670925579361578182965663303]]
[22, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 32, 44, 64, 94, 136, 192, 264, 354, 464, 596, 752, 934, 1144, 1384, 1656, 1962, 2304, 2684, 3104, 3566, 4072, 4624, 9872, 15224, 20768, 26664, 33200, 40864, 50432, 63072, 80464, 104936, 139616, 188600, 257136, 351824, 480832, 654128, 883728, 1183960, 1571744, 2066888, 2692400, 3474816, 4444544, 6716928, 14047424, 29195584, 55051712, 94689152, 151429888, 228936704, 331354880, 463540352, 631430208, 842636096, 1107372352, 1439869184, 1860467840, 2398650112, 3097319552, 4018727168, 5252520896, 6926496576, 9220739264, 12385968256, 16767037952, 22832700416, 55202876416, 94688424448, 156109560320, 277820310016, 541420425216, 1098294335488, 2203823398912, 4260367296512, 7870410829824, 13901655544320, 23566358788608, 38517986355712, 60969418157056, 93838804696064, 140932146563072, 207176413086720, 298924490949632, 424364837065216, 594086332705280, 821875146953216, 1125858986784768, 1530169670496256, 2067373691846656, 3407960631402496, 7905420656205824, 17482574821658624, 34450966301786112, 61988088128471040, 105413218071281664, 175351126580199424, 294808772305289216, 513608258905309184, 935667214792114176, 1767477002526789632, 3400025070451548160, 6541621277952761856, 12425971422111809536, 23128839421425565696, 42038320913975361536, 74538852803785170944, 128988583484847562752, 218094959413567393792, 360826215694676819968, 585039595989947531264, 931064584202652614656, 1456557282795395874816, 3830106743130038730752, 7057750621718428057600, 13095470346583270490112, 27163481972854196404224, 60623406166187053154304, 135046082557468941484032, 287811775953795746365440, 579846338324986026524672, 1106722682079721429139456, 2015885099458933023440896, 3536330018960054635724800, 6034949175448602726563840, 10130047105203411845120000, 16924509731471197662478336, 28480816569620955326840832, 48767092251481068754567168]]
[23, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 33, 45, 65, 95, 137, 193, 265, 355, 465, 597, 753, 935, 1145, 1385, 1657, 1963, 2305, 2685, 3105, 3567, 4073, 4625, 5225, 11125, 17133, 23339, 29905, 37121, 45477, 55751, 69113, 87245, 112477, 147939, 197729, 267097, 362645, 492543, 666761, 897317, 1198541, 1587355, 2083569, 2710193, 3493765, 4464695, 5657625, 8435360, 17369315, 35802614, 67224949, 115330364, 184088543, 277842898, 401458481, 560556696, 761892731, 1013956334, 1327907789, 1718999476, 2208679991, 2827633226, 3620069833, 4649663888, 6007614099, 7823407334, 10278973349, 13627044140, 18214670095, 24512998850, 33154592225, 79726113325, 135951813445, 221493390205, 386931262449, 739553694413, 1477968859493, 2936559934941, 5641097999521, 10377177009517, 18273572244773, 30903206564413, 50405238945777, 79633037643277, 122334742371973, 183376188670109, 269020817825249, 387288790380717, 548429240102277, 765557380702461, 1055534660890225, 1440208926482765, 1948187325925925, 2617393671359325, 3498772111198625, 5683778810524725, 12988450313416925, 28506184676476645, 55918529528510225, 100189898388705013, 169399012284051837, 279248538727454373, 463111051172028513, 792457223478462005, 1415370644286959101, 2624826207302885093, 4973794735936598417, 9461404578894297589, 17823799571971210845, 32975554167268440997, 59663261685373830817, 105413121300289743413, 181880211370634140317, 306740246915421853925, 506307163136788007825, 819114926697262651125, 1300774016348042164925, 2030508647779623785125, 3119909998602613398625, 8102182137481503865250, 14742093701897503069175, 26741294462536401665500, 53911616705286358093925, 117522184198473765948550, 257812515593160048657787, 544251203597994986986176, 1089539301443255959108745]]
[24, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 34, 46, 66, 96, 138, 194, 266, 356, 466, 598, 754, 936, 1146, 1386, 1658, 1964, 2306, 2686, 3106, 3568, 4074, 4626, 5226, 5876, 12480, 19196, 26116, 33404, 41352, 50452, 61484, 75620, 94544, 120588, 156884, 207532, 277784, 374244, 505084, 680276, 911840, 1214108, 1604004, 2101340, 2729128, 3513908, 4486092, 5680324, 7135856, 10505248, 21312304, 43579080, 81491264, 139461872, 222208640, 334858456, 483101904, 673434944, 913543696, 1212913000, 1583770656, 2042517776, 2611842272, 3323767928, 4223956528, 5377655904, 6877773296, 8855651848, 11495239168, 15051461424, 19873755200, 26435863064, 35373168272, 47529030016, 113704259968, 192833174144, 310731494944, 533427369056, 1000575164480, 1970174383520, 3875815505760, 7398021049536, 13551655723008, 23791877941312, 40141755430816, 65345572561568, 103053188165824, 158042837674592, 236492946314976, 346318487191040, 497595143914112, 703106403709952, 979066647921952, 1346099976013536, 1830593470944576, 2466599625243936, 3298541884717664, 4385087703360832, 5804705290598656, 9302895382084096, 20960198924051712, 45670591326199424, 89205804680370560, 159213909008972800, 267815233025212800, 437949792810940800, 717460584179189760, 1207650927875039232, 2116999190040963072, 3856174148620173952, 7197862874965902464, 13534682168223663616, 25281186739689695360, 46482444707443362176, 83712735421327757056, 147374784571276307968, 253544056055146271488, 426545888052622589568, 702508262221290874752, 1134203268470356850688, 1797580880145212782464, 2800516742335613448576, 4294452016113189998080, 6489813940394704331776]]
[25, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 35, 47, 67, 97, 139, 195, 267, 357, 467, 599, 755, 937, 1147, 1387, 1659, 1965, 2307, 2687, 3107, 3569, 4075, 4627, 5227, 5877, 6579, 13941, 21419, 29107, 37171, 45905, 55803, 67647, 82611, 102381, 129291, 166475, 218035, 289225, 386651, 518487, 694707, 927333, 1230699, 1621731, 2120243, 2749249, 3535291, 4508783, 5704371, 7161309, 8923851, 12981834, 25964361, 52679080, 98115631, 167515686, 266456877, 400964004, 577670643, 804068226, 1088898609, 1442770848, 1879114135, 2415617374, 3076352469, 3894833820, 4918331547, 6213831354, 7876120473, 10038577560, 12887355519, 16679770774, 21767851261, 28628149140, 37899093699, 50427345906, 67324819329, 160271053137, 270418959297, 431339618961, 728414682073, 1341739076561, 2603393360841, 5070540418545, 9616206905361, 17540079266769, 30702211946673, 51683271869777, 83975931978793, 132213450495569, 202443610753657, 302459484256689, 442203574972449, 634269772099665, 894539565179169, 1243007095819281, 1704874490147833, 2312038112190161, 3105142640393385, 4136459386776945, 5473956026558385, 7207077040760529, 9454960484128017, 14963601160264401, 33266537977597425, 71986867934392497, 140041000763634297, 249057224673251345, 417012200783523881, 677060750076004497, 1097049810569011329, 1818981004342892241, 3133073830274926081, 5608509647747910001, 10312920238838113577, 19165848609356022289, 35488515242975515001, 64834202679764374097, 116211574230170388081, 203848698443298239697, 349690261861585347729]]
[26, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 36, 48, 68, 98, 140, 196, 268, 358, 468, 600, 756, 938, 1148, 1388, 1660, 1966, 2308, 2688, 3108, 3570, 4076, 4628, 5228, 5878, 6580, 7336, 15512, 23808, 32320, 41216, 50792, 61544, 74256, 90104, 110776, 138608, 176736, 229264, 301448, 399896, 532784, 710088, 943832, 1248352, 1640576, 2140320, 2770600, 3557960, 4532816, 5729816, 7188216, 8952272, 11071648, 15926624, 31422272, 63270656, 117385536, 199959200, 317553376, 477217664, 686658656, 954496864, 1290667520, 1707046016, 2218409984, 2843888544, 3609095840, 4549201408, 5713254944, 7170158432, 9016765120, 11388683264, 14474473664, 18534054560, 23922266208, 31118701184, 40765075936, 53711605088, 71074043264, 94303280512, 223441447936, 375202727168, 592853658624, 985832805120, 1784373488640, 3412253918080, 6579396971776, 12396515090048, 22514537527808, 39292203346944, 65996015372288, 107037832662016, 168256906098176, 257255413983872, 383799968894208, 560306803033984, 802436365115392, 1129835262757632, 1567081799085056, 2144918438518016, 2901893973972992, 3886594698164608, 5160723697603840, 6803398468171904, 8917189554314752, 11636629632385536, 15140199341037568, 23682429547296768, 51987890433273856, 111759844778143744, 216584507482681344, 383924291748505600, 640156543940347904, 1032722711753102336, 1656874090723301376, 2709618398587793408, 4590756041977643008, 8080904265710387200]]
[27, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 37, 49, 69, 99, 141, 197, 269, 359, 469, 601, 757, 939, 1149, 1389, 1661, 1967, 2309, 2689, 3109, 3571, 4077, 4629, 5229, 5879, 6581, 7337, 8149, 17197, 26369, 35763, 45549, 56025, 67689, 81327, 98117, 119749, 148561, 187691, 241245, 314481, 414009, 548007, 726453, 961373, 1267105, 1660579, 2161613, 2793225, 3581961, 4558239, 5756709, 7216629, 8982257, 11103259, 13635133, 19407844, 37792191, 75536538, 139612041, 237296736, 376273899, 564758166, 811672629, 1126914076, 1521762487, 2009515602, 2606460609, 3333333528, 4217463459, 5295854286, 6619521453, 8259476820, 10314841135, 12923662090, 16277127033, 20637983952, 26364123099, 33938425350, 44006152869, 57421343628, 75303874599, 99109079746, 130712049073, 308318031917, 515409846541, 807284827389, 1323066488913, 2354701127949, 4438660111101, 8472376131549, 15857991494161, 28676620098029, 49897059059469, 83623793405373, 135390323989233, 212505490334925, 324462838451517, 483426637214877, 704813536948977, 1007997060316077, 1417174506012045, 1962454370679421, 2681249714188817, 3620102589782157, 4837121478586365, 6405293802792285, 8417047025455185, 10990584739284333, 14278731298006157, 18481295904357181, 23862334343781809, 36920603864882389, 80082087562798709, 171072542454765701, 330328592942600721]]
[28, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 38, 50, 70, 100, 142, 198, 270, 360, 470, 602, 758, 940, 1150, 1390, 1662, 1968, 2310, 2690, 3110, 3572, 4078, 4630, 5230, 5880, 6582, 7338, 8150, 9020, 19000, 29108, 39444, 50180, 61616, 74252, 88876, 106668, 129320, 159172, 199364, 254004, 328352, 429020, 564188, 743836, 979992, 1286996, 1681780, 2184164, 2817168, 3607340, 4585100, 5785100, 7246600, 9013860, 11136548, 13670164, 16676480, 23500912, 45190208, 89674904, 165130864, 280071104, 443452080, 664807976, 954436256, 1323671696, 1785305056, 2354227256, 3048411152, 3890381536, 4909370576, 6144411336, 7648687040, 9495529136, 11786543744, 14662444504, 18317280944, 23016876032, 29122425328, 37120363880, 47659776480, 61598812880, 80061772832, 104508747128, 136819940944, 179397065504, 421336666688, 701383094496, 1089658593632, 1761666225664, 3084798914816, 5733098588672, 10832642217376, 20140567933024, 36261470195392, 62905726146720, 105195329647328, 170024112343616, 266480999496576, 406347465665728, 604684061765920, 880526443529120, 1257719713871680, 1765932487620192, 2441910839326816, 3331059866197120, 4489480572826112, 5986646910338432, 7908988277743776, 10364754603160800, 13490694432345024, 17461284061415968]]
[29, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 39, 51, 71, 101, 143, 199, 271, 361, 471, 603, 759, 941, 1151, 1391, 1663, 1969, 2311, 2691, 3111, 3573, 4079, 4631, 5231, 5881, 6583, 7339, 8151, 9021, 9951, 20925, 32031, 43371, 55119, 67577, 81247, 96919, 115775, 139509, 170463, 211779, 267567, 343089, 444959, 581359, 762271, 999725, 1308063, 1704219, 2208015, 2842473, 3634143, 4613447, 5815039, 7278181, 9047135, 11171571, 13706991, 16715169, 20264607, 28288926, 53742933, 105900156, 194303475, 328865178, 519981673, 778676440, 1116794535, 1547285910, 2084633757, 2745508788, 3549761595, 4521903762, 5693274993, 7105148944, 8813095471, 10892992398, 13449166437, 16625241324, 20618382339, 25697750922, 32228121849, 40699769160, 51765896503, 66289073542, 85398343341, 110558886948, 143656371531, 187098368130, 243935505153, 570557171457, 946038069945, 1458649499553, 2328193264617, 4013715109761, 7356144501393, 13758632896321, 25408096619825, 45542289783681, 78767676516297, 131434505227233, 212076919404249, 331927848023553, 505521089098337, 751396873962625, 1092932942452961, 1559331744041473, 2186807198843481, 3020033450397729, 4113945884347209]]
[30, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 40, 52, 72, 102, 144, 200, 272, 362, 472, 604, 760, 942, 1152, 1392, 1664, 1970, 2312, 2692, 3112, 3574, 4080, 4632, 5232, 5882, 6584, 7340, 8152, 9022, 9952, 10944, 22976, 35144, 47552, 60376, 73920, 88688, 105472, 125456, 150336, 182456, 224960, 281960, 358720, 461856, 599552, 781792, 1020608, 1330344, 1727936, 2233208, 2869184, 3662416, 4643328, 5846576, 7311424, 9082136, 11208384, 13745672, 16755776, 20307200, 24475648, 33863168, 63588096, 124443712, 227518208, 384303488, 606818816, 907762944, 1300718080, 1800443008, 2423311616, 3187977792, 4116378880, 5235228416, 6578195456, 8189023232, 10125904896, 12467509504, 15321137920, 18833586752, 23205409536, 28709388928, 35714172416, 44714177792, 56367044096, 71540089728, 91367442688, 117319729216, 151288447232, 195687410688, 253573931008, 328792702976, 766005493760, 1265398304768, 1937325258752, 3055206093824, 5188764995584, 9380191795200, 17366444433408, 31851755218944, 56835338645504, 98000365868032, 163171536812032, 262850155460608, 410837677154304, 624961535451136]]
[31, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 41, 53, 73, 103, 145, 201, 273, 363, 473, 605, 761, 943, 1153, 1393, 1665, 1971, 2313, 2693, 3113, 3575, 4081, 4633, 5233, 5883, 6585, 7341, 8153, 9023, 9953, 10945, 12001, 25157, 38453, 51995, 65961, 80657, 96589, 114551, 135729, 161821, 195173, 238931, 297209, 375273, 479741, 618799, 802433, 1042677, 1353877, 1752971, 2259785, 2897345, 3692205, 4674791, 5879761, 7346381, 9118917, 11247043, 13786265, 16798361, 20351837, 24522399, 29393441, 40323624, 74875163, 145554814, 265191389, 447053828, 704984311, 1053560090, 1508307449, 2086005152, 2805133683, 3686551286, 4754509045, 6038155772, 7573730063, 9407692306, 11601114449, 14235720728, 17422059083, 21310381422, 26104921997, 32082387700, 39615612839, 49203484682, 61508415529, 77402823056, 98026283939, 124855247078, 159787432869, 205243304684, 264287278783, 340771640066, 439506454145, 1020074487949, 1679220980437, 2554014909149, 3982407168433, 6667028101293, 11891435488405, 21792534975805, 39693861349505]]
[32, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 42, 54, 74, 104, 146, 202, 274, 364, 474, 606, 762, 944, 1154, 1394, 1666, 1972, 2314, 2694, 3114, 3576, 4082, 4634, 5234, 5884, 6586, 7342, 8154, 9024, 9954, 10946, 12002, 13124, 27472, 41964, 56708, 71884, 87800, 104964, 124172, 146612, 173984, 208636, 253716, 313340, 392776, 498644, 639132, 824228, 1065968, 1378700, 1779364, 2287788, 2927000, 3723556, 4707884, 5914644, 7383104, 9157532, 11287604, 13828828, 16842984, 20398580, 24571324, 29444612, 35110032, 47779520, 87765968, 169501352, 307768480, 517828880, 815565920, 1217656888, 1741797488, 2407016160, 3234134576, 4246455368, 5470789376, 6938973232, 8690074688, 10773538520, 13253590864, 16215295232, 19772739984, 24079935464, 29345110112, 35849219408, 43969620256, 54210017144, 67237955888, 83931326752, 105435542000, 133233274248, 169228882112, 215849909360, 276168323840, 354044463640, 454296981008, 582902420288, 1347991143424, 2211725253568]]
[33, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 43, 55, 75, 105, 147, 203, 275, 365, 475, 607, 763, 945, 1155, 1395, 1667, 1973, 2315, 2695, 3115, 3577, 4083, 4635, 5235, 5885, 6587, 7343, 8155, 9025, 9955, 10947, 12003, 13125, 14315, 29925, 45683, 61699, 78155, 95361, 113827, 134351, 158123, 186845, 222867, 269339, 330379, 411257, 518595, 660583, 847211, 1090517, 1404851, 1807155, 2317259, 2958193, 3756515, 4742655, 5951275, 7421645, 9198035, 11330123, 13873419, 16889705, 20447491, 24622487, 29498091, 35165893, 41726195, 56349874, 102435361, 196570704, 355725239, 597387854, 939720677, 1401741964, 2003561691, 2766707306, 3714596041, 4873234888, 6272260575, 7946470406, 9938041421, 12299690756, 15099095107, 18424962594, 22395236849, 27168011584, 32955844999, 40044287934, 48815578421, 59778609020, 73606442795, 91182839770, 113659458969, 142525622456, 179692767919, 227595976054, 289315239069]]
[34, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 44, 56, 76, 106, 148, 204, 276, 366, 476, 608, 764, 946, 1156, 1396, 1668, 1974, 2316, 2696, 3116, 3578, 4084, 4636, 5236, 5886, 6588, 7344, 8156, 9026, 9956, 10948, 12004, 13126, 14316, 15576, 32520, 49616, 66976, 84784, 103352, 123192, 145104, 170280, 200424, 237888, 285824, 348352, 430744, 539624, 683184, 871416, 1116360, 1432368, 1836384, 2348240, 2990968, 3791128, 4779152, 5989704, 7462056, 9240480, 11374656, 13920096, 16938584, 20498632, 24675952, 29553944, 35224200, 41787024, 49351968, 66164064, 119071872, 227070592, 409568896, 686538144, 1078677216, 1607606784, 2296116576, 3168503136, 4251054528, 5572763136, 7166378944, 9069954208, 11329077024, 14000046720, 17154309024, 20884544352, 25312889088, 30601868160, 36968728320, 44703986080, 54195143008, 65956674816, 80667570144, 99217880928]]
[35, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 45, 57, 77, 107, 149, 205, 277, 367, 477, 609, 765, 947, 1157, 1397, 1669, 1975, 2317, 2697, 3117, 3579, 4085, 4637, 5237, 5887, 6589, 7345, 8157, 9027, 9957, 10949, 12005, 13127, 14317, 15577, 16909, 35261, 53769, 72547, 91781, 111785, 133073, 156447, 183101, 214741, 253721, 303195, 367285, 451265, 561761, 706967, 896877, 1143533, 1461289, 1867091, 2380773, 3025369, 3827441, 4817423, 6029981, 7504389, 9284921, 11421259, 13968917, 16989681, 20552065, 24731783, 29612237, 35285021, 41850441, 49418051, 58107205, 77362412, 137878391, 261329954, 469839345, 786137000, 1233738115, 1837148894, 2622126077, 3616027300, 4848308783, 6351251546, 8161028585, 10319263968, 12875281403, 15889295254, 19436862005, 23614985564, 28550356327, 34410302354, 41417142113]]
[36, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 46, 58, 78, 108, 150, 206, 278, 368, 478, 610, 766, 948, 1158, 1398, 1670, 1976, 2318, 2698, 3118, 3580, 4086, 4638, 5238, 5888, 6590, 7346, 8158, 9028, 9958, 10950, 12006, 13128, 14318, 15578, 16910, 18316, 38152, 58148, 78420, 99156, 120672, 143484, 168396, 196604, 229816, 270388, 321476, 387204, 472848, 585036, 731964, 923628, 1172072, 1491652, 1899316, 2414900, 3061440, 3865500, 4857516, 6072156, 7548696, 9331412, 11469988, 14019940, 17043056, 20607852, 24790044, 29673036, 35348424, 41916516, 49486868, 58178836, 68122144, 90096784, 159072864, 299699832, 537110352, 897093216, 1406282256, 2092375176, 2984405952, 4113108400, 5511427456, 7215259416, 9264533616, 11704786560, 14589426096, 17982938664]]
[37, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 47, 59, 79, 109, 151, 207, 279, 369, 479, 611, 767, 949, 1159, 1399, 1671, 1977, 2319, 2699, 3119, 3581, 4087, 4639, 5239, 5889, 6591, 7347, 8159, 9029, 9959, 10951, 12007, 13129, 14319, 15579, 16911, 18317, 19799, 41197, 62759, 84603, 106919, 130025, 154439, 180967, 210807, 245669, 287911, 340691, 408135, 495521, 609479, 758207, 951703, 1202013, 1523495, 1933099, 2450663, 3099225, 3905351, 4899479, 6116279, 7595029, 9380007, 11520899, 14073223, 17098769, 20666055, 24850799, 29736407, 35414477, 41985319, 49558491, 58253351, 68199625, 79537991, 104531206, 182889005, 342554276, 611990779, 1020368834, 1597767201, 2375405120, 3385928207, 4663785854, 6245756725]]
[38, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 48, 60, 80, 110, 152, 208, 280, 370, 480, 612, 768, 950, 1160, 1400, 1672, 1978, 2320, 2700, 3120, 3582, 4088, 4640, 5240, 5890, 6592, 7348, 8160, 9030, 9960, 10952, 12008, 13130, 14320, 15580, 16912, 18318, 19800, 21360, 44400, 67608, 91104, 115080, 139856, 165952, 194176, 225728, 262320, 306312, 360864, 430104, 519312, 635120, 785728, 981136, 1233392, 1556856, 1968480, 2488104, 3138768, 3947040, 4943360, 6162400, 7643440, 9430760, 11574048, 14128824, 17156880, 20726736, 24914112, 29802416, 35483248, 42056920, 49632992, 58330824, 68280144, 79621632, 92507520, 120842496, 209577024, 390291264, 695125824, 1156980864]]
[39, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 49, 61, 81, 111, 153, 209, 281, 371, 481, 613, 769, 951, 1161, 1401, 1673, 1979, 2321, 2701, 3121, 3583, 4089, 4641, 5241, 5891, 6593, 7349, 8161, 9031, 9961, 10953, 12009, 13131, 14321, 15581, 16913, 18319, 19801, 21361, 23001, 47765, 72701, 97931, 123649, 150177, 178037, 208039, 241385, 279789, 325613, 382019, 453137, 544249, 661989, 814559, 1011961, 1266245, 1591773, 2005499, 2527265, 3180113, 3990613, 4989207, 6210569, 7693981, 9483725, 11629491, 14186801, 17217449, 20789957, 24980047, 29871129, 35554805, 42131389, 49710443, 58411329, 68363777, 79708469, 92597639, 107195689]]
[40, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 50, 62, 82, 112, 154, 210, 282, 372, 482, 614, 770, 952, 1162, 1402, 1674, 1980, 2322, 2702, 3122, 3584, 4090, 4642, 5242, 5892, 6594, 7350, 8162, 9032, 9962, 10954, 12010, 13132, 14322, 15582, 16914, 18320, 19802, 21362, 23002, 24724, 51296, 78044, 105092, 132636, 161000, 190708, 222572, 257796, 298096, 345836, 404180, 477260, 570360, 690116, 844732, 1044212, 1300608, 1628284, 2044196, 2568188, 3223304, 4036116, 5037068, 6260836, 7746704, 9538956, 11687284, 14247212, 17280536, 20855780, 25048668, 29942612, 35629216, 42208796, 49790916, 58494940]]
[41, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 51, 63, 83, 113, 155, 211, 283, 373, 483, 615, 771, 953, 1163, 1403, 1675, 1981, 2323, 2703, 3123, 3585, 4091, 4643, 5243, 5893, 6595, 7351, 8163, 9033, 9963, 10955, 12011, 13133, 14323, 15583, 16915, 18321, 19803, 21363, 23003, 24725, 26531, 54997, 83643, 112595, 142051, 172337, 203979, 237791, 274979, 317261, 367003, 427371, 502499, 597673, 719531, 876279, 1077923, 1336517, 1666427, 2084611, 2610915, 3268385, 4083595, 5086991, 6313251, 7801661, 9596507, 11747483, 14310115, 17346201, 20924267, 25120039, 30016931]]
[42, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 52, 64, 84, 114, 156, 212, 284, 374, 484, 616, 772, 954, 1164, 1404, 1676, 1982, 2324, 2704, 3124, 3586, 4092, 4644, 5244, 5894, 6596, 7352, 8164, 9034, 9964, 10956, 12012, 13134, 14324, 15584, 16916, 18322, 19804, 21364, 23004, 24726, 26532, 28424, 58872, 89504, 120448, 151904, 184200, 217864, 253712, 292952, 337304, 389136, 451616, 528880, 626216, 750264, 909232, 1113128, 1374008, 1706240, 2126784, 2655488, 3315400, 4133096, 5139024, 6367864, 7858904, 9656432, 11810144, 14375568]]
[43, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 53, 65, 85, 115, 157, 213, 285, 375, 485, 617, 773, 955, 1165, 1405, 1677, 1983, 2325, 2705, 3125, 3587, 4093, 4645, 5245, 5895, 6597, 7353, 8165, 9035, 9965, 10957, 12013, 13135, 14325, 15585, 16917, 18323, 19805, 21365, 23005, 24727, 26533, 28425, 30405, 62925, 95633, 128659, 162205, 196601, 232377, 270351, 311733, 358245, 412257, 476939, 556429, 656017, 782345, 943623, 1149861, 1413117, 1747761, 2170755, 2701949, 3364393, 4184665, 5193215, 6424725]]
[44, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 54, 66, 86, 116, 158, 214, 286, 376, 486, 618, 774, 956, 1166, 1406, 1678, 1984, 2326, 2706, 3126, 3588, 4094, 4646, 5246, 5896, 6598, 7354, 8166, 9036, 9966, 10958, 12014, 13136, 14326, 15586, 16918, 18324, 19806, 21366, 23006, 24728, 26534, 28426, 30406, 32476, 67160, 102036, 137236, 172964, 209552, 247532, 287724, 331340, 380104, 436388, 503364, 585172, 687104, 815804, 979484, 1188156, 1453880, 1791028, 2216564, 2750340]]
[45, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 55, 67, 87, 117, 159, 215, 287, 377, 487, 619, 775, 957, 1167, 1407, 1679, 1985, 2327, 2707, 3127, 3589, 4095, 4647, 5247, 5897, 6599, 7355, 8167, 9037, 9967, 10959, 12015, 13137, 14327, 15587, 16919, 18325, 19807, 21367, 23007, 24729, 26535, 28427, 30407, 32477, 34639, 71581, 108719, 146187, 184191, 223065, 263343, 305847, 351791, 402901, 461551, 530915, 615135, 719505, 850671, 1016847, 1228047]]
[46, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 56, 68, 88, 118, 160, 216, 288, 378, 488, 620, 776, 958, 1168, 1408, 1680, 1986, 2328, 2708, 3128, 3590, 4096, 4648, 5248, 5898, 6600, 7356, 8168, 9038, 9968, 10960, 12016, 13138, 14328, 15588, 16920, 18326, 19808, 21368, 23008, 24730, 26536, 28428, 30408, 32478, 34640, 36896, 76192, 115688, 155520, 195896, 237152, 279824, 324736, 373104, 426656, 487768, 559616, 646344]]
[47, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 57, 69, 89, 119, 161, 217, 289, 379, 489, 621, 777, 959, 1169, 1409, 1681, 1987, 2329, 2709, 3129, 3591, 4097, 4649, 5249, 5899, 6601, 7357, 8169, 9039, 9969, 10961, 12017, 13139, 14329, 15589, 16921, 18327, 19809, 21369, 23009, 24731, 26537, 28429, 30409, 32479, 34641, 36897, 39249, 80997, 122949, 165243, 208089, 251825, 296989, 344407, 395297]]
[48, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 58, 70, 90, 120, 162, 218, 290, 380, 490, 622, 778, 960, 1170, 1410, 1682, 1988, 2330, 2710, 3130, 3592, 4098, 4650, 5250, 5900, 6602, 7358, 8170, 9040, 9970, 10962, 12018, 13140, 14330, 15590, 16922, 18328, 19810, 21370, 23010, 24732, 26538, 28430, 30410, 32480, 34642, 36898, 39250, 41700, 86000, 130508, 175364, 220780]]
[49, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 59, 71, 91, 121, 163, 219, 291, 381, 491, 623, 779, 961, 1171, 1411, 1683, 1989, 2331, 2711, 3131, 3593, 4099, 4651, 5251, 5901, 6603, 7359, 8171, 9041, 9971, 10963, 12019, 13141, 14331, 15591, 16923, 18329, 19811, 21371, 23011, 24733, 26539, 28431, 30411, 32481, 34643, 36899, 39251, 41701, 44251]]
[50, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 60, 72, 92, 122, 164, 220, 292, 382, 492, 624, 780, 962, 1172, 1412, 1684, 1990, 2332, 2712, 3132, 3594, 4100, 4652, 5252, 5902, 6604, 7360, 8172, 9042, 9972, 10964, 12020, 13142, 14332, 15592, 16924, 18330, 19812, 21372, 23012, 24734, 26540, 28432, 30412, 32482, 34644, 36900]]
登録:
投稿 (Atom)